The Improving the Thermal Performance of a Heat Exchanger using a New Passive Technology
محتوى المقالة الرئيسي
الملخص
في هذه الدراسة ، تم تطبيق تقنية التذبذب في مبادل حراري متعدد الأنابيب مع وجود حواجز. تم فحص رقم Nusselts الخاص بالانتقال الحراري في المبادل الحراري (HE) على مدى واسع من ظروف التشغيل ، ورقم رينولدز (Re = 200-3000) ورقم رينولدز المتذبذب (Reo = 0-3800). أظهرت النتائج تحسنًا معنويًا في رقم نسلت على جانب الأنبوب. تم تحقيق 5 أضعاف من تحسين نقل الحرارة عند الحد الأقصى للتذبذب ومعدلات التدفق ، والحد الأقصى Nu = 180 عند Re = 1500 و Reo = 3800. كان لمعدل التدفق تأثير أكبر على تحسين نقل الحرارة من التدفق التذبذب عند Re> 1000. كما تم تقييم الأداء الحراري للمبادل الحراري TH. انخفض TH مع زيادة معدل التدفق والتدفق التذبذب بسبب الزيادة في P نتيجة لزيادة كثافة الخلط. 4.5 هي أعلى قيمة للأداء الحراري تم تحقيقها عند Re = 200 ، Reo = 1500
المقاييس
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
##plugins.generic.plaudit.displayName##
المراجع
REFERENCES
Bejan A, Convection Heat Transfer, 2nd ed. New York: John Wiley & Sons, France, 1995.
Moses OP, Ademola D. Numerical Investigation of the Concave-Cut Baffles Effect in Shell-and-Tube Heat Exchanger. Journal of Engineering Sciences 2019; 6 (1): 1–9. DOI: https://doi.org/10.21272/jes.2019.6(1).e1
Uday CK, Satish C. Modeling for Shell-Side Pressure Drop for Liquid Flow in Shell-And-Tube Heat Exchanger. International Journal of Heat and Mass Transfer 2006; 49: 601-610. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.022
Nasiruddin MH, Kamran S. Heat Transfer Augmentation in a Heat Exchanger Tube using a Baffle. International Journal of Heat and Fluid Flow 2007; 28 (2): 318-328. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2006.03.020
Chirag M, Jeetendra V, Ramesh A. The Heat Transfer Enhancement Techniques and their Thermal Performance Factor. Beni-Suef University Journal of Basic and Applied Sciences 2018; 7 (1): 1-21. DOI: https://doi.org/10.1016/j.bjbas.2017.10.001
Dipankar D, Tarun K, Santanu B. Helical Baffle Design in Shell and Tube Type Heat Exchanger with CFD Analysis. International journal of heat and technology 2017; 35 (2): 378-383. DOI: https://doi.org/10.18280/ijht.350221
Stephens G, Malcolm M. Heat Transfer Performance for Batch Oscillatory Flow Mixing. Experimental Thermal and Fluid Science 2002; 25: 583-594. DOI: https://doi.org/10.1016/S0894-1777(01)00098-X
Stonestreet P, Van Der Veeken P. The Effects of Oscillatory Flow and Bulk Flow Components on Residence Time Distribution in Baffled Tube Reactors. Chemical Engineering Research and Design 1999; 77(8): 671-684. DOI: https://doi.org/10.1205/026387699526809
Mazubert A, Fletcher D, Poux M, Aubin J. Hydrodynamics and Mixing in Continuous Oscillatory Flow Reactors—Part I: Effect of Baffle Geometry. Chemical Engineering and Processing: Process Intensification 2016; 108: 78-92. DOI: https://doi.org/10.1016/j.cep.2016.07.015
Xiongwei N. Continuous Oscillatory Baffled Reactor Technology. Innovation Pharma Technology 2006; 20: 90-96.
Mazubert A, Fletcher DF, Poux M, Aubin J. Hydrodynamics and Mixing in Continuous Oscillatory Flow Reactors—Part II: Characterization Methods. Chemical Engineering and Processing: Process Intensification 2016; 102: 102–116. DOI: https://doi.org/10.1016/j.cep.2016.01.009
Mackley MR, Stonestreet P. Heat-Transfer and Associated Energy-Dissipation for Oscillatory Flow in Baffled Tube. Chemical Engineering Science 1995; 50(1): 2211-2224. DOI: https://doi.org/10.1016/0009-2509(95)00088-M
Juan S, Herrero H, Espín S, Anh NP, Adam PH. Numerical Study of the Flow Pattern and Heat Transfer Enhancement in Oscillatory Baffled Reactors with Helical Coil Inserts. Chemical Engineering Research and Design 2012; 90 (6): 732–742. DOI: https://doi.org/10.1016/j.cherd.2012.03.017
Eiamsa-ard S, Yongsiri K, Nanan K, Thianpong K. Heat Transfer Augmentation by Helically Twisted Tapes as Swirl and Turbulence Promoters. Chemical Engineering and Processing: Process Intensification 2012; 60: 42–48. DOI: https://doi.org/10.1016/j.cep.2012.06.001
González-Juárez D, Herrero-Martín R, Solano J.P. Enhanced heat transfer and power dissipation in oscillatory-flow tubes with circular-orifice baffles: a numerical study. Applied Thermal Engineering 2018; 141, 494-502. DOI: https://doi.org/10.1016/j.applthermaleng.2018.05.115
García A, Vicente P, Viedma A. Experimental Study of Heat Transfer Enhancement with Wire Coil Inserts in Laminar-Transition-Turbulent Regimes at Different Prandtl Numbers. International Journal of Heat and Mass Transfer 2005; 48(21–22): 4640–4651. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.024
Zhang D, He Z, Guan J, Tang S, Shen C. Heat Transfer and Flow Visualization of Pulsating Heat Pipe with Silica Nanofluid: an Experimental Study. International Journal of Heat and Mass Transfer 2022; 183: 122100 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100
Muñoz-Cámara J, Solano JP, Pérez-García J. Non-Dimensional Analysis of Experimental Pressure Drop and Energy Dissipation Measurements in Oscillatory Baffled Reactors. Chemical Engineering Science 2022; 262: 118030. DOI: https://doi.org/10.1016/j.ces.2022.118030
Muñoz-Cámara J, Solano JP, Pérez-García J. Experimental Correlations for Oscillatory-Flow Friction and Heat Transfer in Circular Tubes with Tri-Orifice Baffles. International Journal of Thermal Sciences 2020; 156; 106480. DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106480
Zimparov V. Enhancement of Heat Transfer by a Combination of a Single-Start Spirally Corrugated Tubes with a Twisted Tape, Experimental Thermal and Fluid Sci 2002; 25: 535–546. DOI: https://doi.org/10.1016/S0894-1777(01)00112-1