Heat Transfer Enhancement in MCHS using Al2O3 / Water Nanofluid

Main Article Content

Fayadh M. Abed Al-Dulaimy
Hameed Jasim Khalaf
Bassim Mohammed Majel

Abstract

In the present paper, Numerical simulation is performed to investigate the laminar force convection of Al2O3/water Nanofluid in a flow channel with different constant heat flux 50, 90, 150 W/cm2 respectively and two values of mass flow rate of fluid. The heat sources are placed on the bottom wall of channel which produces much thermal energy that must be discarded from the system. The remaining surfaces of channel are kept adiabatic to exchange energy between Nanofluid and heat sources. The effects of Reynolds number Re < 1000), the volume fraction of nanoparticles of nanofluid have the percentages of 0, 1, 3 and 5%. on the average heat transfer coefficient (h), pressure drop (∇P), surface Nusselt number and wall temperature ( Tw ) are evaluated. The use of Nanofluid can produce an asymmetric velocity along the height of the channel. The results show that the wall temperature decreases remarkably as Re and volume of fraction increase. It is also observed that there is an enhancement of average heat transfer coefficient and it’s observed also that the use of Nanofluid improves MCHS performance by reducing fin (conductive) thermal resistance.

Metrics

Metrics Loading ...

Article Details

Section
Articles

Plaudit

References

G. Roy, S.J. Palm and C.T. Nguyen, “Heat transfer and fluid flow of Nanofluids in laminar radial flow cooling,” Journal of Thermal Science, 2005, Vol. 14, 4, 362- 367. DOI: https://doi.org/10.1007/s11630-005-0059-2

Tuckerman, D.B. and Pease, R.F.W., “High-performance heat sinking for VLSI”, IEEE Electron Device Letters1981. DOI: https://doi.org/10.1109/EDL.1981.25367

Wu, P. and Little, W.A., “Measurement of friction factors for the flow of gases in very fine channels used for micro miniature Joule-Thomson refrigerators”, Cryogenics .

Liu, D. and Garimella, S.V., “Investigation of liquid flow in micro channels, AIAA Journal of Thermo physics and Heat Transfer”,2004, Vol. 18, p. 65–72. DOI: https://doi.org/10.2514/1.9124

Jung, J., Oh, H. and Kwak, H. Forced convective heat transfer of Nanofluids in Microchannels. International Journal of Heat and Mass Transfer. 2009, 52, 466 – 472. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.033

Choi, S.B., Barron, R.F., and Warrington, R.O., Fluid flow and heat transfer in Micro tubes, Micromechanical Sensors, Actuators, and Systems, ASME DSC, 1991, Vol. 32, 123–134 .

Rahman, m.m.and gui. Experimental measurements of fluid flow and heat transfer in micro scale cooling passage in a chip substrate.

Peng, X.F. and Peterson, G.P., Convective heat transfer and flow friction for water flow in micro channel structures. Int. J. Heat Mass Transfer. 1996, 39 12, 2599–2608 . DOI: https://doi.org/10.1016/0017-9310(95)00327-4

Judy, J., Maynes, D., and Webb, B.W., Characterization of frictional pressure drop for liquid flows through micro channels, International Journal of Heat and Mass Transfer, 2002 . DOI: https://doi.org/10.1016/S0017-9310(02)00076-5

Nguyen, C., Desgranges, F., Roy, Galanis, N., Maré, T., Boucher, S., and Angue Mintsa, H., “Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids – Hysteresis Phenomenon,” Int. J. Heat Fluid Fl., 2007. 28(6), 1492- 1506 .

A.G. Fedorov, R. Viskanta, Three- dimensional conjugate heat transfer in the Micro channel heat sink for electronic packaging, Int. J. Heat Mass Transfer, 2000. 43 (3). DOI: https://doi.org/10.1016/S0017-9310(99)00151-9

Shah RK: Laminar flow friction & forced convection heat transfer in ducts of arbitrary geometry. Int J Heat Mass Transfer 1975, 18:849- 862 . DOI: https://doi.org/10.1016/0017-9310(75)90176-3

Shah RK, London AL: Laminar Flow Forced Convection in Ducts New York: Academic Press Inc; 1978 .

J.Driker J.P. Meyer, ” Thermal characterization of embedded heat Spreading layer in rectangular heat generating electronic modules ” , International Journal of heat and mass transfer, 2009, Vol.52 , 1374- 1384. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.045

Gupta RV, Geyer PE, Fletcher DF, Haynes BS: Thermohydraulic performance of a periodic trapezoidal channel with a triangular cross-section. Int J Heat Mass Trans. 2008, 51:2925-2929. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.017

Nguyen, C., Desgranges, F., Roy,G., Galanis, N., Maré, T., Boucher, S., and Angue Mintsa, H., “Temperature and Particle-Size Dependent Viscosity Data for Water- Based Nanofluids – Hysteresis Phenomenon,” Int. J. Heat Fluid Fl. 2007,28(6), 1492-1506. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004

Incropera, F.P.& DeWitt, D. F “Fundamentals of heat and mass transfer”, Wiley 2001.

Kuan, W. K. & Kandlikar, S. G.. “Experimental study and model on critical heat flux of refrigerant123 and water in microchannels”. Journal of heat transfer, 2008. 130, 034503 DOI: https://doi.org/10.1115/1.2804936

Fluent Inc. , Gambit version 6 manuals , centerra resourse park , 10 Cavendish Court , Lebanon , New Hampshire, USA, 2001 (www.fluent.com) .

Fluent Inc. , Fluent Version 12.0.16 Manuals, Centerra Resource Park , 10 Cavendish Court, Lebanon, New Hampshire,USA,2001, www.fluent.com.

Kays W, Crawford M, Weigand B: Convective Heat and Mass Transport. 4 edition. Singapore: MacGraw Hill; 2005.

Einstein, A., “A New Determination of the Molecular Dimensions,” Ann. Phys. 1906 324(2), 289-306. DOI: https://doi.org/10.1002/andp.19063240204

XWang,XXuandSUSChoi,J. Thermophys. Heat Transfer 13(4), 474, 1999. DOI: https://doi.org/10.2514/2.6486

BCPakandYICho,Expt.Heat Transfer. 1998, 11, 151.

Batchelor, G. K., 1977, “The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles,” J. Fluid Mech., 83(1), pp. 97-117. DOI: https://doi.org/10.1017/S0022112077001062

B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151–170. DOI: https://doi.org/10.1080/08916159808946559

S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, Heat transfer behaviours of nanofluids in a uniformly heated tube, Super lattices Microstructures 35 (2004) 543–557. DOI: https://doi.org/10.1016/j.spmi.2003.09.012

S.J. Palm, G. Roy, C.T. Nguyen, Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties, Applied Thermal Engineering 26 (2006) 2209–2218. DOI: https://doi.org/10.1016/j.applthermaleng.2006.03.014

S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids science and technology, John Wiley & Sons, Hoboken NJ, 2008.

Yang, Y., Zhang, Z.G.,Grulke, E.A., Anderson, W.B., Wu, G.F. “Heat transfer properties of nanoparticles- in-fluid dispersions (nanofluids) in laminar flow”. Int. J. Heat Mass Transfer, 2005, 48, 1107-1116 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038

J C Maxwell , A treatise on electricity and magnetism , 2nd Ed . Clarendon Press, Oxford, UK, 1881, vol. 1, p. 440.

R L Hamilton and O K Crosser , Industrial and Engineering Chemistry Fundamentals 1(3), 187 (1962) . DOI: https://doi.org/10.1021/i160003a005

S P Jang and S U S Choi , Appl . Phys. Lett. 84(21) , 4316 (2004) . 34- AMRITRAJ BHANJA , “Numerical solution of three dimensional conjugate heat transfer in a Microchannel heat sink and CFD analysis ” NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA-769008 (2009) .

Similar Articles

You may also start an advanced similarity search for this article.