The Improving the Thermal Performance of a Heat Exchanger using a New Passive Technology

Main Article Content

Manar Hameed
https://orcid.org/0009-0000-7112-5765
Harith N. Mohammed
https://orcid.org/0000-0003-2705-1177
Mohammed R. Abdullah

Abstract

In this study, the oscillation technique was applied in a multi-tube heat exchanger with baffles. The Nusselt number was investigated in the heat exchanger (HE) over a wide range of operating conditions, Reynolds number (Re =205-3200), and oscillatory flow Reynolds number (Reo =0-3800). The results showed a significant enhancement in the tube-side Nusselt number, Nu. 5-fold heat transfer enhancement was achieved at maximum oscillatory and flow rates, the maximum Nu=180 at Re =1500 and Reo=3800. The flow rate had more impact on the heat transfer enhancement than the oscillatory flow by 1.25 when Re>1000. The thermal performance of the heat exchanger, TH, was also evaluated. TH decreased with the increasing flow rate and oscillatory flow due to the increase in the ΔP due to the increase in the mixing intensity. A high value of the thermal performance, TH=4.5, was achieved at Re=205, Reo=1500. According to the literature, this TH value indicated a significant improvement in heat transfer enhancement.

Metrics

Metrics Loading ...

Article Details

Section
Articles

Plaudit

References

REFERENCES

Bejan A, Convection Heat Transfer, 2nd ed. New York: John Wiley & Sons, France, 1995.

Moses OP, Ademola D. Numerical Investigation of the Concave-Cut Baffles Effect in Shell-and-Tube Heat Exchanger. Journal of Engineering Sciences 2019; 6 (1): 1–9. DOI: https://doi.org/10.21272/jes.2019.6(1).e1

Uday CK, Satish C. Modeling for Shell-Side Pressure Drop for Liquid Flow in Shell-And-Tube Heat Exchanger. International Journal of Heat and Mass Transfer 2006; 49: 601-610. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.022

Nasiruddin MH, Kamran S. Heat Transfer Augmentation in a Heat Exchanger Tube using a Baffle. International Journal of Heat and Fluid Flow 2007; 28 (2): 318-328. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2006.03.020

Chirag M, Jeetendra V, Ramesh A. The Heat Transfer Enhancement Techniques and their Thermal Performance Factor. Beni-Suef University Journal of Basic and Applied Sciences 2018; 7 (1): 1-21. DOI: https://doi.org/10.1016/j.bjbas.2017.10.001

Dipankar D, Tarun K, Santanu B. Helical Baffle Design in Shell and Tube Type Heat Exchanger with CFD Analysis. International journal of heat and technology 2017; 35 (2): 378-383. DOI: https://doi.org/10.18280/ijht.350221

Stephens G, Malcolm M. Heat Transfer Performance for Batch Oscillatory Flow Mixing. Experimental Thermal and Fluid Science 2002; 25: 583-594. DOI: https://doi.org/10.1016/S0894-1777(01)00098-X

Stonestreet P, Van Der Veeken P. The Effects of Oscillatory Flow and Bulk Flow Components on Residence Time Distribution in Baffled Tube Reactors. Chemical Engineering Research and Design 1999; 77(8): 671-684. DOI: https://doi.org/10.1205/026387699526809

Mazubert A, Fletcher D, Poux M, Aubin J. Hydrodynamics and Mixing in Continuous Oscillatory Flow Reactors—Part I: Effect of Baffle Geometry. Chemical Engineering and Processing: Process Intensification 2016; 108: 78-92. DOI: https://doi.org/10.1016/j.cep.2016.07.015

Xiongwei N. Continuous Oscillatory Baffled Reactor Technology. Innovation Pharma Technology 2006; 20: 90-96.

Mazubert A, Fletcher DF, Poux M, Aubin J. Hydrodynamics and Mixing in Continuous Oscillatory Flow Reactors—Part II: Characterization Methods. Chemical Engineering and Processing: Process Intensification 2016; 102: 102–116. DOI: https://doi.org/10.1016/j.cep.2016.01.009

Mackley MR, Stonestreet P. Heat-Transfer and Associated Energy-Dissipation for Oscillatory Flow in Baffled Tube. Chemical Engineering Science 1995; 50(1): 2211-2224. DOI: https://doi.org/10.1016/0009-2509(95)00088-M

Juan S, Herrero H, Espín S, Anh NP, Adam PH. Numerical Study of the Flow Pattern and Heat Transfer Enhancement in Oscillatory Baffled Reactors with Helical Coil Inserts. Chemical Engineering Research and Design 2012; 90 (6): 732–742. DOI: https://doi.org/10.1016/j.cherd.2012.03.017

Eiamsa-ard S, Yongsiri K, Nanan K, Thianpong K. Heat Transfer Augmentation by Helically Twisted Tapes as Swirl and Turbulence Promoters. Chemical Engineering and Processing: Process Intensification 2012; 60: 42–48. DOI: https://doi.org/10.1016/j.cep.2012.06.001

González-Juárez D, Herrero-Martín R, Solano J.P. Enhanced heat transfer and power dissipation in oscillatory-flow tubes with circular-orifice baffles: a numerical study. Applied Thermal Engineering 2018; 141, 494-502. DOI: https://doi.org/10.1016/j.applthermaleng.2018.05.115

García A, Vicente P, Viedma A. Experimental Study of Heat Transfer Enhancement with Wire Coil Inserts in Laminar-Transition-Turbulent Regimes at Different Prandtl Numbers. International Journal of Heat and Mass Transfer 2005; 48(21–22): 4640–4651. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.024

Zhang D, He Z, Guan J, Tang S, Shen C. Heat Transfer and Flow Visualization of Pulsating Heat Pipe with Silica Nanofluid: an Experimental Study. International Journal of Heat and Mass Transfer 2022; 183: 122100 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100

Muñoz-Cámara J, Solano JP, Pérez-García J. Non-Dimensional Analysis of Experimental Pressure Drop and Energy Dissipation Measurements in Oscillatory Baffled Reactors. Chemical Engineering Science 2022; 262: 118030. DOI: https://doi.org/10.1016/j.ces.2022.118030

Muñoz-Cámara J, Solano JP, Pérez-García J. Experimental Correlations for Oscillatory-Flow Friction and Heat Transfer in Circular Tubes with Tri-Orifice Baffles. International Journal of Thermal Sciences 2020; 156; 106480. DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106480

Zimparov V. Enhancement of Heat Transfer by a Combination of a Single-Start Spirally Corrugated Tubes with a Twisted Tape, Experimental Thermal and Fluid Sci 2002; 25: 535–546. DOI: https://doi.org/10.1016/S0894-1777(01)00112-1

Similar Articles

You may also start an advanced similarity search for this article.