Preparation of Electrode Materials from Iron Cobalt Oxide on Carbon Fiber Cloth used for Asymmetric Supercapacitors

محتوى المقالة الرئيسي

Abeer A. Radhi
Sami I. Jafar Al-Rubaiey
Shaymaa Al-Rubaye

الملخص

The primary purpose of this research is to discover new supercapacitor electrode materials to anticipate future requirements for achieving higher-performing materials for energy storage applications. Therefore, iron cobalt oxide was investigated as a more practical and affordable technique to generate multicationic oxide materials for use as supercapacitor electrodes. In this context, one-dimensional nanostructured binary metal oxides have garnered significant attention in the field of supercapacitor (SC) applications due to their exceptional capability for fast-charge transportation. In particular, high-performance pseudocapacitor electrodes could now be made using highly aligned nanospherical arrays directly grown on conducting substrates. The iron cobalt oxide (FeCo2O4 (FCO)) electrodes on carbon fiber cloth (CFC) have porous structures constructed from several small building blocks of primary nanospherical, contributing to the nanospherical-like morphology. With a surface area of 130.04 m2 g-1, the FCO-CFC nanocomposite electrode considerably increased the pseudocapacitors’ electrochemical activity. Moreover, the FCO-CFC nanocomposite electrode demonstrated exceptional cyclic stability, i.e., 66% retention of capacitance at a current density of 10 mA g-1 after a process of 1000 cycles and a current density of 10 mA g-1 at a surprisingly high specific capacitance of 225 F g-1 for a nanocomposite electrode. In addition, the unique porous nanospherical texture, the good conductivity, and the high effectiveness can be credited to the asymmetric supercapacitor employing FCO-CFC electrodes that achieved acceptable electrochemical efficiency due to the synergistic interaction between the FCO and the CFC.

المقاييس

يتم تحميل المقاييس...

تفاصيل المقالة

القسم
Articles

##plugins.generic.plaudit.displayName##

المراجع

Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y. Review of the Use of Transition – Metal - Oxide and Conducting Polymer-Based Fibres for High -Performance Supercapacitors. Materials and Design 2020; 186:108199. DOI: https://doi.org/10.1016/j.matdes.2019.108199

Simon P, Gogotsi Y. Energy and Exergy Analyses of a Combined Power Plant Based on Natural Gas Combustion. Tikrit Journal of Engineering Sciences 2023; 30(3):17-26. DOI: https://doi.org/10.25130/tjes.30.3.3

Yang Y, Han Y, Jiang W, Zhang Y, Xu Y, Ahmed AM. Application of the Supercapacitor for Energy Storage in China: Role and Strategy. Applied Sciences 2022; 12:354. DOI: https://doi.org/10.3390/app12010354

Alsultan M, Al-Rubaye S, Al-Keisy A, Swiegers GF, Taha IG. Stable and Efficient Photoinduced Charge Transfer of MnFe2O4 /Polyaniline Photoelectrode in Highly Acidic Solution. Colloids and Interfaces 2022; 6(1):1-11. DOI: https://doi.org/10.3390/colloids6010001

You Y, Mao H, Li K, Liu X. Improved Energy Storage Density of Composite Films Based on Poly(arylene ether nitrile) and Sulfonated Poly(arylene ether nitrile) Functionalized Graphene. Materials Today Communications 2018; 17:355-361. DOI: https://doi.org/10.1016/j.mtcomm.2018.09.025

Radhi AA, Al-rubaiey SIJ, Al-Rubaye S. Carbon Fiber Cloth Performance Improvement via Hybrid Materials (Fe2O3, FeCo2O4, and Conducting Polymer) Addition for Energy Storage Applications. Engineering and Technology Journal 2024; 42(3): 356-370. DOI: https://doi.org/10.30684/etj.2023.142048.1517

Yu M, Feng X. Thin-Film Electrode-Based Supercapacitors. Joule 2019; 3(2):338-360. DOI: https://doi.org/10.1016/j.joule.2018.12.012

Radhi AA, Al-rubaiey SIJ, Al-Rubaye S. Ordered FeCo2O4 & Polypyrrole Particles/Branch Nanotrees Arrays Grown on Carbon Fiber Cloth Substrate for Energy Storage Applications. Materials Today Communications 2024; 38:108345. DOI: https://doi.org/10.1016/j.mtcomm.2024.108345

Radhi AA, Al-rubaiey SIJ, Al-Rubaye S. NH4F-Assisted and Morphology-Controlled Fabrication of Iron Cobaltite FeCo2O4 Nanoparticles on Carbon Fiber Cloth for Supercapacitor Applications. Chemical Papers 2024; 78:733-746. DOI: https://doi.org/10.1007/s11696-023-03111-9

Mahdi R, Mohammed EH, Al-Keisy A, Alsultan M, Majid WHA. Tailoring the Morphology of BiNbO4 of Polymorph in 2D Nanosheets for Enhancement of Photocatalytic Activity in the Visible Range. Physica E: Low-dimensional Systems and Nanostructures 2022; 136:115009. DOI: https://doi.org/10.1016/j.physe.2021.115009

Puratchi MM, Ponnarasi K, Rajendran A, Venkatachalam V, Thamizharasan K, Jothibas M. Electrochemical Behavior of an Advanced FeCo2O4 Electrode for Supercapacitor Applications. Journal Of Electronic Materials 2020; 49:5964-5969. DOI: https://doi.org/10.1007/s11664-020-08296-3

Pendashteh A, Palma J, Anderson M, Marcilla R. Nanostructured Porous Wires of Iron Cobaltite: Novel Positive Electrode for High-Performance Hybrid Energy Storage Devices. Journal of Materials Chemistry A 2015; 3(32):16849-16859. DOI: https://doi.org/10.1039/C5TA02701B

Bokhari SW, Siddique AH, Sherrell PC, Yue X, Karumbaiah KM, Wei S, Ellis AV, Gao W. Advances in Graphene-Based Supercapacitor Electrodes. Energy Reports 2020; 6:2768–2784. DOI: https://doi.org/10.1016/j.egyr.2020.10.001

Zhang J, Cui Y, Shan G. Metal Oxide Nanomaterials for Pseudocapacitors. 2019. http://arxiv.org/abs/1905.01766.

Wang X, Xu P, Zhang P, Ma S. Preparation of Electrode Materials Based on Carbon Cloth Via Hydrothermal Method and their Application in Supercapacitors. Materials 2021;14(23): 7148, (1-18). DOI: https://doi.org/10.3390/ma14237148

Siwal SS, Zhang Q, Devi N, Thakur VK. Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers 2020;12(3): 505, (1-30). DOI: https://doi.org/10.3390/polym12030505

Rajagopalan R, Wu Z, Liu Y, et al. A Novel High Voltage Battery Cathodes of Fe2+/Fe3+ Sodium Fluoro Sulfate Lined with Carbon Nanotubes for Stable Sodium Batteries. Journal of Power Sources 2018; 398:175-182. DOI: https://doi.org/10.1016/j.jpowsour.2018.07.066

Al-Keisy A, Mahdi R, Ahmed D, Al-Attafi K, Wan WH. Enhanced Photoreduction Activity in BiOI1-xFx Nanosheet for Efficient Removal of Pollutants from Aqueous Solution. ChemistrySelect 2020; 5(31):9758-9764. DOI: https://doi.org/10.1002/slct.202000805

Al-Rubaye S, Rajagopalan R, Subramaniyam CM, Yu Z, Dou SX, Cheng Z. Electrochemical Performance Enhancement in MnCo2O4 Nanoflake/Graphene Nanoplatelets Composite. Journal of Power Sources 2016; 324:179-187. DOI: https://doi.org/10.1016/j.jpowsour.2016.05.081

Islam M, Hasan F, Lu X. Hierarchical NiCo2O4 @GO@PPy Nanorods are Grown on Carbon Cloth as Supercapacitor Electrodes. North American Academic Research 2019; 2(4):116-128.

Liu X, Xu W, Zheng D, Li Z, Zeng Y, Lu X. Carbon Cloth as An Advanced Electrode Material for Supercapacitors: Progress and Challenges. Journal of Materials Chemistry A 2020; 8(35):17938-17950. DOI: https://doi.org/10.1039/D0TA03463K

Li S, Wang Y, Sun J, Xu C, Chen H. Simple Preparation of Porous FeCo2O4 Microspheres and Nanosheets for Advanced Asymmetric Supercapacitors. ACS Applied Energy Materials 2020; 3(11): 11307-11317. DOI: https://doi.org/10.1021/acsaem.0c02241

He X, Zhao Y, Chen R, et al. Hierarchical FeCo2O4@polypyrrole Core/Shell Nanowires on Carbon Cloth for High-Performance Flexible All-Solid - State Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering 2018; 6(11): 14945-14954. DOI: https://doi.org/10.1021/acssuschemeng.8b03440

Chodankar NR, Dubal DP, Kwon Y, Kim DH. Direct Growth of FeCo2O4 Nanowire Arrays on Flexible Stainless Steel Mesh for High-Performance Asymmetric Supercapacitor. NPG Asia Materials 2017; 9(8):1-10. DOI: https://doi.org/10.1038/am.2017.145

Rajkumar S, Elanthamilan E, Princy Merlin J, Sathiyan A. Enhanced Electrochemical Behaviour of FeCo2O4/PANI Electrode Material for Supercapacitors. Journal of Alloys and Compounds 2021; 874:159876. DOI: https://doi.org/10.1016/j.jallcom.2021.159876

Hameed SA, Amar RB, Hamad KI, Jarullah AT. Synthesis, Design and Evaluation of Innovative Combined Nano-Catalysts Supported on Activated Carbon Prepared from Apricot Shells. Tikrit Journal of Engineering Sciences 2023; 30(3):113-123. DOI: https://doi.org/10.25130/tjes.30.3.12

Howard AA, Tschumper GS, Hammer NI. Effects of Hydrogen Bonding on Vibrational Normal Modes of Pyrimidine. The Journal of Physical Chemistry A 2010;114(25):6803-6810. DOI: https://doi.org/10.1021/jp101267w

Alreda BA, Al-Rubaye SH. Study of Electrochemical Properties of NiCo2O4/ Reduced Graphene Oxide / PEDOT: PSS Ternary Nanocomposite for High Performance Supercapacitor Electrode. NeuroQuantology 2021; 19(8):77-83. DOI: https://doi.org/10.14704/nq.2021.19.8.NQ21116

Xia S, Guo Q, Yu Y, et al. Surface Modification of Carbon Fiber Cloth with Graphene Oxide Through an Electrophoresis Method for Lithium Metal Anode. Carbon 2023; 203:743-752. DOI: https://doi.org/10.1016/j.carbon.2022.12.034

Wang Y, Sun S, Wu X, Liang H, Zhang W. Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators. Nano-Micro Letters 2023; 15(1): 78, (1-39). DOI: https://doi.org/10.1007/s40820-023-01065-x

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.