تصميم وتنفيذ فرن حثي محمول قليل الخسائر مغذى من مصدر تيار
محتوى المقالة الرئيسي
الملخص
يتركز هذا البحث على تصميم عملي لفرن تسخين حثي (IHF) محمول يتكون من عاكس رنين توازي يتغذى من مصدر تيار (CFPRI) يعمل كمجهز قدرة لملف حثي (IC) وعينته. يتصل هذا الملف الحثي على التوازي مع المكثف المناسب لتشكيل حمل الخزان. تم في هذا البحث عرض التفاصيل للخطوات التصميمة لكل جزء تم تنفيذه. إن مصدر القدرة المنفذ تم إختباره عملياعلى حمل معين كما تمت مقارنة النتائج العملية مع تلك المستحصلة من محاكاة للمنظومة باستخدام حزمة حاسوبية تعرف بأسم (Plecs). إن النتائج العملية جاءت متوافقة مع نتائج المحاكاة
المقاييس
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
##plugins.generic.plaudit.displayName##
المراجع
Byun JK, Choi K, Roh HS, Hahn Sy. Optimal Design Procedure for a Practical Induction Heating Cooker. IEEE Transactions on Magnetics 2000;36(4):1390-1393. DOI: https://doi.org/10.1109/20.877698
Bausière R, Labrique F, Séguier G. Power Electronic Converters: Springer; 1993. DOI: https://doi.org/10.1007/978-3-642-52454-7
Isobe T, Usuki K, Arai N, Kitahara T, Fukutani K, Shimada R. Variable Frequency Induction Heating Using Magnetic Energy Recovery Switch (MERS). IEEE Power Electronics Specialists Conference: IEEE;2008. p. 2139-2145. DOI: https://doi.org/10.1109/PESC.2008.4592259
Dawson FP, Jain P. A Comparison of Load Commutated Inverter Systems for Induction Heating and Melting Applications. IEEE Transactions on Power Electronics 1991;6(3):430-441. DOI: https://doi.org/10.1109/63.85911
Dede EJ, Gonzalez GV, Linares JA, Jordan J, Ramirez D, Rueda P. 25-kW/50-kHz Generator for Induction Heating. IEEE Transactions on Industrial Electronics 1991;38(3):203-209. DOI: https://doi.org/10.1109/41.87588
Rasheed FA, Abdulbaqi IM. Analysis of a Current-Fed Parallel Resonant Inverter for Induction Heating Applications. 1st Babylon International Conference on Information Technology and Science (BICITS): IEEE;2021. p. 169-173. DOI: https://doi.org/10.1109/BICITS51482.2021.9509868
Wali SA, Muhammed AA. Power Sharing and Frequency Control in Inverter-based Microgrids. Tikrit Journal of Engineering Sciences 2022;29(3):70-81. DOI: https://doi.org/10.25130/tjes.29.3.8
Martín Segura G. Induction Heating Converter's Design, Control and Modeling Applied to Continuous Wire Heating. PhD. Thesis, Poly Technique University of Catalunya, Barcelona :2012.
Rashid MH. Power Electronics Handbook: Butterworth-heinemann, UK:Life Fellow IEEE; 2017.
Boylestad RL. Introductory Circuit Analysis: Pearson Education India; 2003.
Dede E, et al. Conception and Design of a Parallel Resonant Converter for Induction Heating. Proceedings APEC'91: Sixth Annual Applied Power Electronics Conference and Exhibition: IEEE;1991.p.38-44.
Dieckerhoff S, Ruan M, De Doncker RW. Design of an IGBT-based LCL-Resonant Inverter for High-Frequency Induction Heating. Conference Record of the 1999 IEEE Industry Applications Conference Thirty-Fourth IAS Annual Meeting (Cat No99CH36370):IEEE;1999.p.2039-2045.
Chudjuarjeen S, Koompai C, Monyakul V. Full-bridge Current-Fed Inverter with Automatic Frequency Control for Forging Application. IEEE Region 10 Conference TENCON 2004: IEEE; 2004. p. 128-131.
Dede E, Jordan J, Esteve V, Gonzalez J, Ramirez D. Design Considerations for Induction Heating Current-Fed Inverters with IGBT's Working at 100 Khz. Proceedings Eighth Annual Applied Power Electronics Conference and Exposition:IEEE;1993.p.679-685.
Mohammed MA, Abdulbaqi IM. Harmonic Analyses of a Voltage Fed Induction Furnace. 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT): IEEE;2022.p.268-272. DOI: https://doi.org/10.1109/ISMSIT56059.2022.9932846
Internet Source: Power Stream Technology, USA, American Wire Gauge Table, Wire Gauge and Current Limits Including Skin Depth and Tensile Strength,https://www.powerstream.com/Wire_Size.htm.
Vicente EM, et al. Replacement of the TCA 785 for a Configurable IC to Drive Single and Three Phase Converters. IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society: IEEE;2011.p.710-715. DOI: https://doi.org/10.1109/IECON.2011.6119397
Hameed KR, Hussain NA, Ali AM, Abdulbaq IM. Design, Simulation and Implementation of a 60kw Variable Voltage DC Power Supply for a Current Parallel Resonant Inverter Used in Induction Heating Applications. Journal of Engineering and Sustainable Development 2016;20(1):134-150.
Kamli M, Yamamoto S, Abe M. A 50-150 kHz Half-Bridge Inverter for Induction Heating Applications. IEEE Transactions on Industrial Electronics 1996;43(1):163-172. DOI: https://doi.org/10.1109/41.481422
Namadmalan A, Moghani JS, Milimonfared J. A Current-Fed Parallel Resonant Push-Pull Inverter with a New Cascaded Coil Flux Control for Induction Heating Applications. Journal of Power Electronics 2011;11(5):632-638. DOI: https://doi.org/10.6113/JPE.2011.11.5.632
Namadmalan A, Moghani JS. Single-Phase Current Source Induction Heater with Improved Efficiency and Package Size. Journal of Power Electronics 2013;13(2):322-328. DOI: https://doi.org/10.6113/JPE.2013.13.2.322
Hsieh G-C, Hung JC. Phase-Locked Loop Techniques. IEEE Transactions on Industrial Electronics 1996;43(6):609-615. DOI: https://doi.org/10.1109/41.544547
Khan I, Tapson J, De Vries I. Automatic Frequency Control of an Induction Furnace. IEEE Africon 5th Africon Conference in Africa (Cat No 99CH36342): IEEE;1999.p.913-916.
Karaca H, Tanç A, Kilinç S. Analysis of Tuning in Resonant Inverter. Electronics Letters 2002;38(20): 1155 – 1156. DOI: https://doi.org/10.1049/el:20020834
Sheng H, Pei Y, Yang X, Wang F, Tipton C. Frequency Tracking Control for a Capacitor-Charging Parallel Resonant Converter with Phase-Locked Loop. APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition: IEEE;2007.p.1287-1292. DOI: https://doi.org/10.1109/APEX.2007.357681
Jassim AH, Hussein AA, Abbas LF. The Performance of a Three-Phase Induction Motor under and Sver Unbalance Voltage. Tikrit Journal of Engineering Sciences 2021;28(2):15-32. DOI: https://doi.org/10.25130/tjes.28.2.02