تقييم طرق التنبؤ بهيدروغراف السيح السطحي المباشر للعواصف المطرية لحوض كويزة – داباشان

محتوى المقالة الرئيسي

Khalid Mahmoud Khidir
https://orcid.org/0000-0002-1577-7096

الملخص

اعتمدت لتقييم  هيدروغراف السيح السطحي للعواصف المطريه طريقتي الزخم  و Aron & White لتقدير معلمات  هيدروغراف Nash القياسي  اللحظي ، بينما استخدمت طريقتين  لحساب المطر المؤثر (مؤشر فاي  وخدمة حفظ التربة)  بعد اعتماد تعديل قيم المنحني للطريقه الاخيرة باستخدام علاقتين خاصتين بالفواقد الاولية وانحدار الحوض. وضع نموذج رياضي اعد له  برنامج حاسوبي في ال MATLAB للتنبؤ بهيدروغراف  السيح السطحي المباشر  لحوض كويزة - داباشان الواقع  في شمال شرق العراق. تم اعداد خرائط الحوض ونوع التربة واستخدام الأرض ومعالجتها باعتماد برنامج WMS . استخدمت البيانات المرصودة المتاحة لسبع عواصف مطلرية في مرحلة المعايرة ، ليتم الحصول على متوسط  قيم المعلمات المثلى وأرقام المنحنى المثلى. في مرحلة التحقق لعاصفتين لم تعتمدا في مرحله المعايرة تم تطبيق كل من المعلمات المثلى للعاصفتين ومتوسط القيم المثلى للمعلمات المحسوبه في مرحله المعايرة . أظهرت نتائج الاختبارات الإحصائية تفضيل طريقة خدمات حفظ التربه  مع طريقة الزخم في تقدير هيدروغراف الجريان السطحي المباشر (متوسط كفاءة Nash-Sutcliffe   يساوي 0.815 و 0.77)  باستخدام المعلمات المثلى للعاصفتين في مرحله التحقق وكذلك متوسط قيم معلمات IUH لمرحله المعايرة على التوالي. تم الحصول على نتائج مرضية (متوسط كفاءة Nash-Sutcliffe    تساوي 0.77 و 0.76)  باستخدام معلمات العاصفتين  ومتوسط قيم معلمات IUH لمرحلة المعايرة على التوالي) من خلال استخدام طريقة Aron & White مع طريقة خدات حفظ التربة ، والتي تشير إلى قدرة كلتا الطريقتين على تقدير هيدروغراف الجريان السطحي المباشرللحوض المختار.

المقاييس

يتم تحميل المقاييس...

تفاصيل المقالة

القسم
Articles

##plugins.generic.plaudit.displayName##

المراجع

Al-Ghobari H, Dewidar A, Alataway A. Estimation of Surface Water Runoff for a Semi-Arid Area using RS and GIS-Based SCS-CN Method. Water 2020; 12(7), 1924.‏ DOI: https://doi.org/10.3390/w12071924

Beven KJ. Rainfall-runoff modelling: the primer: John Wiley & Sons; 2011. DOI: https://doi.org/10.1002/9781119951001

Nash J. The Form of the Instantaneous Unit Hydrograph. Comptes Rendus et Rapports Assemblee Generale de Toronto 1957; 3: 114-121.

Haji EA. Application of different models for development of instantaneous unit hydrograph for Solag Watershed. M. Sc. thesis, Duhok; Duhok /Iraq: 2010.

Sulistyowati A, Jayadi R, Rahardjo AP. Unit Hydrograph Modeling using Geomorphological Instantaneous Unit Hydrograph (GIUH) Method. Journal of the Civil Engineering Forum 2018; 4(3) :223-232 . DOI: https://doi.org/10.22146/jcef.38860

Agrawal A, Shrivastava R. Development of Synthetic UH by عsing Geomorphologic Instantaneous Unit Hydrograph (GIUH) Based Nash Model. Recent Trends in Civil Engineering: Springer; 2021. pp. 987-1000. DOI: https://doi.org/10.1007/978-981-15-5195-6_72

Khanmohammadi N, Behmanesh J. Comparison of Different Methods Efficiency for Estimation of Nash Instantaneous Unit Hydrograph Parameters in Flood Simulation (Case Study: Aland-Chay, Gara-Chay, Mahabad-Chay and Zab Rivers). Irrigation Sciences and Engineering 2020; 43(1) :15-28.

Babaali H, Sabzevari T, Ghafari S. Development of the Nash Instantaneous Unit Hydrograph to Predict Subsurface Flow in Catchments. Acta Geophysica 2021; 69(5) :1877-1886. DOI: https://doi.org/10.1007/s11600-021-00638-x

Yao C, et al. Evaluating Performance Dependency of a Geomorphologic Instantaneous Unit Hydrograph-Based Hydrological Model On DEM Resolution. Water Science and Engineering 2022; 15(3) :179-188. DOI: https://doi.org/10.1016/j.wse.2022.04.002

Jeong M, Kim D-H. Instantaneous Physical Rainfall–Runoff Prediction Technique using a Power–Law Relationship between Time to Peak and Peak Flow of an Instantaneous Unit Hydrograph and the Rainfall Excess Intensity. Journal of Hydroinformatics 2023; 25(2):415-431. DOI: https://doi.org/10.2166/hydro.2023.128

Metselaar K. The NRCS Curve Number Equation Derived from an Instantaneous Unit Hydrograph: Some Consequences. Journal of Hydrology X 2023; 19:100151. DOI: https://doi.org/10.1016/j.hydroa.2023.100151

Xiang X, Ao T, Li X. Application of a Fractional Instantaneous Unit Hydrograph in the TOPMODEL: a Case Study in Chengcun Basin, China. Applied Sciences 2023; 13(4):2245. DOI: https://doi.org/10.3390/app13042245

Aron G, White EL. Fitting A Gamma Distribution over a Synthetic Unit Hydrograph1. JAWRA Journal of the American Water Resources Association 1982; 18(1):95-98. DOI: https://doi.org/10.1111/j.1752-1688.1982.tb04533.x

Collins MA. DISCUSSION1: “Fitting a Gamma Distribution Over a Synthetic Unit Hydrograph”, by Gert Aron and Elizabeth L. White2. JAWRA Journal of the American Water Resources Association 1983; 19(2):303-304. DOI: https://doi.org/10.1111/j.1752-1688.1983.tb05333.x

Rosso R. Nash Model Relation to Horton order Ratios. Water Resources Research 1984; 20(7):914-920. DOI: https://doi.org/10.1029/WR020i007p00914

Haan CT, Barfield BJ, Hayes JC. Design Hydrology and Sedimentology for Small Catchments: Elsevier; 1994.

Singh SK. Transmuting Synthetic Unit Hydrographs into Gamma Distribution. Journal of Hydrologic engineering 2000; 5(4):380-385. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(380)

Singh P, Bhunya P, Mishra SK, Chaube U. An Extended Hybrid Model for Synthetic Unit Hydrograph Derivation. Journal of Hydrology 2007; 336(3-4):347-360. DOI: https://doi.org/10.1016/j.jhydrol.2007.01.006

Barzinji KTM. Deterministic Optimization for Goizha-Dabashan watershed,Ph. D. Thesis,Sulaymaniah University . 2007.

Buday TaJSZ. The regional geology of Iraq. Tectonism, Magmatism and Metamorphism. Geo-Suv 2 1987; 325 1987.

Subramanya K. Engineering Hydrology: Tata McGraw-Hill Education; 2013.

USDA S. Hydrology, national engineering handbook, Section 4. US Department of Agriculture, Washington, DC, USA 1985.

Chow VT, Maidment, D. & L.J.N.Y. Mays. Applied Hydrology. McGraw-Hill Book Company; 1988.

Dervos N, Baltas E, Mimikou M. Rainfall-runoff simulation in an experimental basin using GIS methods. 2006.

Ajmal M, Kim T-W. Quantifying Excess Stormwater using SCS-CN–Based Rainfall Runoff Models and Different Curve Number Determination Methods. Journal of Irrigation and Drainage Engineering 2015; 141(3):04014058. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000805

Pandit A, Heck HH. Estimations Of Soil Conservation Service Curve Numbers for Concrete and Asphalt. Journal of Hydrologic Engineering 2009; 14(4):335-345. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2009)14:4(335)

Hawkins RH, Theurer FD, Rezaeianzadeh M. Understanding the Basis of The Curve Number Method for Watershed Models and Tmdls. Journal of Hydrologic Engineering 2019; 24(7):06019003. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001755

Ajmal M, Waseem M, Kim D, Kim T-W. A Pragmatic Slope-Adjusted Curve Number Model to Reduce Uncertainty in Predicting Flood Runoff from Steep Watersheds. Water 2020; 12(5):1469. DOI: https://doi.org/10.3390/w12051469

Sharpley AN, Williams JR. EPIC. Erosion/Productivity impact calculator: 1. Model documentation. 2. User manual. 1990.

Huang M, Gallichand J, Wang Z, Goulet M. A Modification to The Soil Conservation Service Curve Number Method for Steep Slopes in The Loess Plateau of China. Hydrological Processes: An International Journal 2006; 20(3):579-589. DOI: https://doi.org/10.1002/hyp.5925

Ajmal M, Waseem M, Ahn J-H, Kim T-W. Runoff estimation using the NRCS slope-adjusted curve number in mountainous watersheds. Journal of Irrigation and Drainage Engineering 2016; 142(4): 04016002. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000998

Gehbrehiwot A, Kozlov D. GIUH-Nash based runoff prediction for Debarwa catchment in Eritrea. E3S Web of Conferences: EDP Sciences; 2019. pp. 05001. DOI: https://doi.org/10.1051/e3sconf/20199705001

Nemes G. New Asymptotic Expansion for the Gamma Function. Archiv der Mathematik 2010; 95(2) :161-169. DOI: https://doi.org/10.1007/s00013-010-0146-9

Bahremand A, Mostafazadeh R. Comparison of different methods for parameter estimation of nash’s instantaneous unit hydrograph in jafarAbad watershed. 2010.

Croley II TE. Gamma Synthetic Hydrographs. Journal of Hydrology 1980; 47(1-2): 41-52. DOI: https://doi.org/10.1016/0022-1694(80)90046-3

Bhunya P, Berndtsson R, Ojha C, Mishra SK. Suitability of Gamma, Chi-Square, Weibull, and Beta Distributions as Synthetic Unit Hydrographs. Journal of Hydrology 2007; 334(1-2) :28-38. DOI: https://doi.org/10.1016/j.jhydrol.2006.09.022

Fang X, Prakash K, Cleveland T, Thompson D, Pradhan P. Revisit of NRCS unit hydrograph procedures. TEXAS SECTION SPRING 2005.

NRCS. Ponds: Planning, Design, Construction. In Agriculture Handbook No. 590; United States Department of Agriculture. 1997: pp.

Nash JS. River Flow Forecasting Through Conceptual Models: Part 1. — A Discussion of Principles. Journal of Hydrology 1970; 10:282-290. DOI: https://doi.org/10.1016/0022-1694(70)90255-6

Adrien NG. Computational hydraulics and hydrology: an illustrated dictionary: CRC Press; 2003.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.