Behavior of Reinforced Concrete Members Exposed to Fire: Review Article
محتوى المقالة الرئيسي
الملخص
تعتبر النار من أكثر الظروف المناخية قسوة التي قد تتعرض لها المباني. على الرغم من أن الخرسانة المسلحة تتمتع بمقاومة جيدة، الامر الذي جعلها واحدة من أكثر مواد البناء استخدامًا في جميع أنحاء العالم، فعند تعرضها لدرجات حرارة عالية، تخضع أعضائها الهيكلية لتغييرات قد تؤدي، في كثير من الحالات، إلى تكسير شامل. تعتبر الحزم والأعمدة والألواح من العناصر الهيكلية الأكثر أهمية لأي هيكل خرساني. تم تصميم الأعضاء الهيكلية بشكل عام لتلبية متطلبات الخدمة وحالات حد السلامة لمختلف الظروف البيئية. عادة، يتم إنشاء أعضاء الهيكل لتلبية درجة مقاومة الحريق المحددة. إن خصائص الهيكل ونوع المهنة مجرد متغيرين يؤثران على مقاومة الحريق. تتمثل الأهداف الأساسية لتصنيف الحرائق الإنشائية في تمكين سكان المبنى من الوقت الكافي للمغادرة، ووقت كافٍ لرجال الإطفاء لإخماد الحريق، ووقت كافٍ لمنع أي ضرر هيكلي محتمل. تتناول هذه المقالة نظرة عامة على كيفية تصرف مختلف العناصر الهيكلية للبناء الخرساني المسلح عند تعرضها لدرجات حرارة عالية. لقد وجد أن الخرسانة تتأثر سلبًا بالحريق أكثر من قضبان التسليح. بالإضافة إلى ذلك، فقد وجد أن الغطاء الخرساني السفلي له تأثير كبير على قدرة التحميل النهائية لمكونات الانحناء، وتوفر الهياكل المجاورة قيودًا للضغط تحد من التمدد الحراري للألواح. لم يتم إجراء الكثير من الأبحاث حول السلوك الديناميكي للقيود. يصف هذا البحث أيضًا البحث التجريبي والرقمي حول السلوك الناري للعوارض والألواح الخرسانية المسلحة والأجزاء الهيكلية الأخرى في ظل ظروف ومواقف مختلفة ليكون بحثًا في فن المراجعة.
المقاييس
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
##plugins.generic.plaudit.displayName##
المراجع
Becker JM, Bresler B. Reinforced concrete frames in fire environments. Journal of the Structural Division 1977; 103: 211–224. DOI: https://doi.org/10.1061/JSDEAG.0004529
Hertz K. Design of fire-exposed concrete structures. Technical University of Denmark 1981.
Terro MJ. Numerical modelling of the behaviour of concrete structures in fire. ACI Structural Journal 1998; 95: 183–193. DOI: https://doi.org/10.14359/538
Shi X, Tan T-H, Tan K-H, et al. Effect of force-temperature paths on behaviors of reinforced concrete flexural members. Journal of Structural Engineering 2002; 128: 365–373. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(365)
Shi X, Tan T-H, Tan K-H, et al. Influence of concrete cover on fire resistance of reinforced concrete flexural members. Journal of Structural Engineering 2004; 130: 1225–1232. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1225)
Elghazouli AY, Izzuddin BA. Failure of lightly reinforced concrete members under fire. II: Parametric studies and design considerations. Journal of Structural Engineering 2004; 130: 18–31. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(18)
Georgali B, Tsakiridis PE. Microstructure of fire-damaged concrete. A case study. Cement and Concrete composites 2005; 27: 255–259. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.022
Ahmad MS, Sadique MR. Understanding the behaviour of RCC structures at elevated temperatures to mitigate fire hazards. International Conference on Challenges in Disaster Mitigation and Management. 2013, p. 17.
Zhang B. Effects of moisture evaporation (weight loss) on fracture properties of high-performance concrete subjected to high temperatures. Fire Safety Journal 2011; 46: 543–549. DOI: https://doi.org/10.1016/j.firesaf.2011.07.010
Ellingwood B, Lin TD. Flexure and shear behavior of concrete beams during fires. Journal of Structural Engineering 1991; 117: 440–458. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1991)117:2(440)
El-Hawary MM, Ragab AM, Abd El-Azim A, et al. Effect of fire on flexural behaviour of RC beams. Construction Building Materials 1996; 10: 147–150. DOI: https://doi.org/10.1016/0950-0618(95)00041-0
Ching JM, Pei WC, Li JW. Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation. Chemosphere 2005; 63(10): 1809-1813. DOI: https://doi.org/10.1016/j.chemosphere.2005.09.035
Khan MS, Prasad J, Abbas H. Shear strength of RC beams subjected to cyclic thermal loading. Construction and Building Materials 2010; 24: 1869–1877. DOI: https://doi.org/10.1016/j.conbuildmat.2010.04.016
Song Y, Fu C, Liang S, et al. Fire resistance investigation of simple supported RC beams with varying reinforcement configurations. Advances in Civil Engineering; 2019. DOI: https://doi.org/10.1155/2019/8625360
Protchenko K, Szmigiera E. Post-fire characteristics of concrete beams reinforced with hybrid FRP bars. Materials (Basel) 2020; 13: 1248. DOI: https://doi.org/10.3390/ma13051248
Abdul-Rahman M, Al-Attar AA, Hamada HM, et al. Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature. Journal of Building Engineering 2020; 29: 101167. DOI: https://doi.org/10.1016/j.jobe.2019.101167
Alyaa A A-A, Mazin B A, Hussein M H, et al. Investigating the behavior of hybrid fiber-reinforced reactive powder concrete beams after exposure to elevated temperatures. Journal of Materials Research and Technology 2020; 9(2): 1966-1977. DOI: https://doi.org/10.1016/j.jmrt.2019.12.029
Ibraheem, O. F., & Abdullah, H. A. Behavior of Steel Beams Subjected to Bending and Shear Loading Under Localized Fire Conditions. Tikrit Journal of Engineering Sciences 2022; 29(3): 82–90. DOI: https://doi.org/10.25130/tjes.29.3.9
Kodur VR, Williams B, Green MF, et al. Fire Endurance Experiments on FRP-Strengthened Reinforced Concrete Slabs and Beams-Slab Assemblies. Research Report No. 175, Fire Research Program, Institute for Research in Canada. 2005, p. 41.
Wu B, Zhang R. Rotational restraint stiffness of concrete beam-slab assembly exposed to fire. Procedia engineering 2017; 210: 479–487. DOI: https://doi.org/10.1016/j.proeng.2017.11.104
Huang Z. The behavior of reinforced concrete slabs in fire. Fire Safety Journal 2010; 45: 271–282. DOI: https://doi.org/10.1016/j.firesaf.2010.05.001
Levesque A. Fire Performance of Reinforced Concrete Slabs. A thesis submitted to the Faculty of the Worcester Polytechnic Institute 2006; 13: 196.
Bailey CG, Toh WS. Behaviour of concrete floor slabs at ambient and elevated temperatures. Fire Safety Journal 2007; 42: 425–436. DOI: https://doi.org/10.1016/j.firesaf.2006.11.009
Bailey CG, Toh WS. Small-scale concrete slab tests at ambient and elevated temperatures. Engineering Structures 2007; 29: 2775–2791. DOI: https://doi.org/10.1016/j.engstruct.2007.01.023
Bratina S, Saje M, Planinc I. The effects of different strain contributions on the response of RC beams in fire. Engineering Structures 2007; 29: 418–430. DOI: https://doi.org/10.1016/j.engstruct.2006.05.008
Khoury GA, Anderberg Y. Concrete spalling review. Fire Safety Design 2000; 60: 5–12.
Ali F, Nadjai A, Abu-Tair A. Explosive spalling of normal strength concrete slabs subjected to severe fire. Materials And Structures 2011; 44: 943–956. DOI: https://doi.org/10.1617/s11527-010-9678-5
Lim L, Buchanan A, Moss P, et al. Computer modelling of restrained reinforced concrete slabs in fire conditions. Journal of structural engineering 2004; 130: 1964–1971. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1964)
Dwaikat MB, Kodur VKR. A numerical approach for modelling the fire-induced restraint effects in reinforced concrete beams. Fire Safety Journal 2008; 43: 291–307. DOI: https://doi.org/10.1016/j.firesaf.2007.08.003
Dwaikat MB, Kodur VKR. Response of restrained concrete beams under design fire exposure. Journal of structural engineering 2009; 135: 1408–1417. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000058
En B. 1-2: 2004 Eurocode 2: Design of concrete structures-Part 1-2: General Rules-Structural fire design. European Standards, London.
Institute AC. Guide for determining fire endurance of concrete elements. American Concrete Institute, 1994.
203-2007 ECP. Egyptian code for design and construction of reinforced concrete structures. Design of Concrete Mixture.
Bilow DN, Kamara ME. Fire and concrete structures. In: Structures Congress 2008: Crossing Borders. 2008, pp. 1–10. DOI: https://doi.org/10.1061/41016(314)299
Allam SM, Elbakry HMF, Rabeai AG. Behavior of one-way reinforced concrete slabs subjected to fire. Alexandria Engineering Journal 2013; 52: 749–761. DOI: https://doi.org/10.1016/j.aej.2013.09.004
Prasad PSR. Effect of Fire on RC Slab. International Journal for Innovative Research in Science & Technology 2016, 3, 04.
Abdullah AI, Al-Khazraji SDM. Structural Behavior of High Strength Laced Reinforced Concrete One-Way Slab Exposed to Fire Flame. Civil Engineering Journal 2019; 5: 2747–2761. DOI: https://doi.org/10.28991/cej-2019-03091446
Bailey C, Moore D. The structural behaviour of steel frames with composite floor slabs subject to fire: Part 1: Theory. Structural Engineering 2000; 78: 19–27.
Bailey C, Moore D. The structural behaviour of steel frames with composite floor slabs subject to fire: Part 1: Theory. Structural Engineering 2000; 78: 19–27.
Sawczuk A, Winnicki L. Plastic behavior of simply supported reinforced concrete plates at moderately large deflections. International Journal of Solids and Structures 1965; 1: 97–111. DOI: https://doi.org/10.1016/0020-7683(65)90019-3
Hayes B. Allowing for membrane action in the plastic analysis of rectangular reinforced concrete slabs. Magazine of Concrete Research 1968; 20: 205–212. DOI: https://doi.org/10.1680/macr.1968.20.65.205
Lim LCS, Wade CA. Experimental fire tests of two-way concrete slabs. Fire Engineering Research Report 02/12, 2002, pp. 1–96.
Lim L, Buchanan A, Moss P, et al. Numerical modeling of two-way reinforced concrete slabs in fire. Engineering Structures 2004; 26: 1081–1091. DOI: https://doi.org/10.1016/j.engstruct.2004.03.009
Moss PJ, Dhakal RP, Wang G, et al. The fire behavior of multi-bay, two-way reinforced concrete slabs. Engineering Structures 2008; 30: 3566–3573. DOI: https://doi.org/10.1016/j.engstruct.2008.05.028
Balaji A, Nagarajan P, Pillai TMM. Predicting the response of reinforced concrete slab exposed to fire and validation with IS456 (2000) and Eurocode 2 (2004) provisions. Alexandria Engineering Journal 2016; 55: 2699–2707. DOI: https://doi.org/10.1016/j.aej.2016.06.005
Ghanem G, Ali T, Mohamed Nooman M, et al. Behavior of Reinforced Concrete Flat Slab Exposed To Fire Experimentally And Numerically By (ANSYS). IOSR Journal of Mechanical and Civil Engineering 2016; 13: 25–42.
Farhan OS. Experimental study on the behavior of different types of steel fiber reinforced concrete mix of two-way slabs subjected to different heat temperatures. Journal of Engineering and Sustainable Development 2019; 23: 26–42. DOI: https://doi.org/10.31272/jeasd.23.1.3