Thermal Loads and Cost Reduction for a Residential House by Change Its Orientation and Add Roof Shading
محتوى المقالة الرئيسي
الملخص
The Iraqi climate is characterized by high temperatures in summer that require a
large capacity of air conditioning systems to meet the suitable climate conditions
which they are appropriate for the comfortable conditions for human especially
housing units. The demerits of these systems are the high-maintenance-cost as well
as high electrical power consumption, whereas the last considers currently one of
the major obstacles in Iraq. This research studies the influence of two significant
factors to reduce the thermal loads of the building which leads to decrease the
consumption of the energy. The Study of the effect for the building's direction to
the falling angle of the sunlight during the daylight in addition to the probability of
reducing the thermal load of the building, and studying the effect of shading the
buildings' roofs with red tile to prevent the falling sunlight on the roofs using the
design method cooling load temperature difference (Cooling Load Temperature
Difference –CLTD-) to calculate the thermal loads of a building designed
according to the modern Iraqi design Located in Baghdad. The results explained a
decrease in the thermal load through external walls by (12.32%) when directing the
building to the direction West (W) compared to the South-West (SW) trend, while
the thermal load through the glass decreased by 24.9% when directing the building
to the North (N )direction with a trend of South-West (SW) as well as a decrease
of 8.5% for the total thermal load of the building when directing the building to the
direction North (N) compared to other trends and when shading the roof with a
material preventing the sun reduces the rate of thermal load of the roof by 55%
compared to the exposed roof. The study also shows in terms of the costs per
building provides about (108787 ID / Day) of the supported governmental costs
whereas the non-governmental cost is about (55987 ID / Day).
المقاييس
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
##plugins.generic.plaudit.displayName##
المراجع
Montreal Protocol, MP Handbook/Section_1.1_The
The full terms re available from https :// ozone.unep.org
/Publications .
ASHRAE Handbook, Fundamentals Volume,
American Society of Heating ,Refrigerating and AirConditioning Engineers, Ins.1997; Atlanta GA.
Arlan B. Strategy Guideline: Accurate Heating and
Cooling Load Calculations ,Building Technology
Program , Energy Efficiency &Renewable Energy2011;
BACOS, Inc.
Abbas EF, Azat SA. The impact of width of the air
gap channel on the mass flow rate, Rayleigh number, and
efficiency of passive solar heating system. Tikrit Journal
of Engineering Sciences 2018; 25 (3): 47-52.
Suad H. D., Kamal J. T. and Ashraf N. H.
"Simulation the Effect of Shape and Orientation on
Energy Performance for Residential Building in Kirkuk”
International journal of environmental science 2016;
:76-83 .
Philip M. and Fung A. S. , “ The Effect of Building
aspect ratio on energy efficiency: A case Study for Multiunit residential Buildings in Canada Buildings” Open
Access Journal, Buildings2014; 4:.336-354.
Joudi Kh. A. and Farhan A A. "A dynamic model and
an experimental study for the internal air and soil
temperatures in an innovative greenhouse". Energy
Conversion and Management2015; 91: 76–82.
Koranteng.C and Abaitey E. ,” Simulation based
analysis on the Effect of Orientation on Energy
Performance of Residential Buildings in Ghana," Journal
of Science and Technology (Ghana)2009; vol.29 .
Haase M. and Amato A. An Invistigation of the
Potentioal for Natural Ventilation and Building
Orientation to achieve thermal comfort in warm and
humid climates. Solar Energy 2009; 83: 389–399.
Capeluto G. I. Energy performance of the selfshading building envelope. Energy and Buildings 2003;
: 327–336.
Yongxin L., Baoming L., Chaoyuan W.,Yanpeng
S.Effect of Shading and Roof Sprinkling in Venlo- Type
Greenhouse in Summer. Transactions of the SCAE 2002;
: 127-130
]12]مدونة التبريد " وزارة األعمار واألسكان, الجهاز المركزي للقياس
والسيطرة النوعية" 2013
]13 ]د. خالد احمد الجودي " مبادئ هندسة تكييف الهواء و التثليج" كلية
الهندسة – جامعة البصرة – الطبعة الثانية 1991
Waes MM. Optimum Building Wall Thickness
under Actual Weather conditions for Kirkuk City. Tikrit
Journal of Engineering Sciences 2018; 25 (4): 10-14.
ASHRAE, , ASHRAE Fundamentals, Chapter
,ASHRAE Inc., Atlanta, GA, 1999.
Wang, S.K. and Lavan, Z.“Air-Conditioning and
Refrigeration” Mechanical Engineering Handbook
Ed.Frank Kreith Boca Raton: CRC Press LLC,1999.
Shafika S. A. Malek.A. M, Namiq S. A., Ozgur K.,
Keem S. Y. Extreme Learning Machines: A new
approach for prediction of reference evapotranspiration.
Journal of Hydrology 2015; 527 : 184–195.
[كتاب مناخ العراق ,علي عبد الزهرة الوائلي ,كاظم عبد الوهاب
االسدي, دار الكتاب و التوثيق في بغداد ,244 لسنة 2017 .
Mahmood H. Khaleel / Tikrit Journal of Engineering Sciences (2020) 27(3): 13-30.
https://nptel.ac.in/courses/Webcourse-contents
Andrew D. Althouse, Carl H. T, Bracciano A.F,
Bracciano D.C, and Bracciano G.M. “Modren
Refrigeration and Air-Conditioning” 20th Editions
Textbook .the Goodheart – Willcox Company ,Inc,2017.
https://www.moelc.gov.iq/index.
فهرست للرموز
m2
A المساحة العمودية على الطاقة المنتقلة
CLF معامل حمل التبريد للزجاج
CLTD فارق درجات الحرارة لحمل التبريد )° C)
Dr معدل التغيير اليومي لدرجة الحرارة الخارجية °C
K الموصلية الحرارية للمواد الصلبة ((C.°m/(W)
LM تصحيح خط العرض والطول للمدينة
q معدل الحرارة )Watt )
)C⁄watt °( الحرارية المقاومة R_th
SC معامل التظليل للزجاج
)Watt/m2
SHG الكسب الحراري الشمسي خالل الزجاج (C.°
الرئيسية االربعة اإلتجاهات S,E,N and W
T درجة الحرارة ° C
)Watt/m2
U معامل الحرارة اإلجمالي (C.°
X سمك طبقة الجدار m
الرموز الجانبية
m معدل القيمة
o الخارجي
i الداخلي
r الغرفة