تقييم سخان هواء شمسي مثقب ذي الممر المزدوج باستخدام تحليل تداخل العوامل المؤثرة لغرض تحسين الأداء في الأنظمة الشمسية الحرارية
محتوى المقالة الرئيسي
الملخص
تعتبر مشكلة الكفاءة القليلة لسخانات الهواء الشمسية عائقاً في تسويق الأنظمة الحرارية الشمسية. يتأثر أداء سخانات الهواء الشمسية بشكل مباشر بتغيير مستوى العوامل المؤثرة. يهدف هذا العمل الى تحديد العوامل المثلى عملياً من أجل تحسين أداء سخان هواء شمسي مثقب ذي الجريان المزدوج. تمت مناقشة تداخل العوامل المتعلقة بأداء سخان هواء شمسي مزدوج الجريان ذي صفيحة امتصاص مثقبة بثقوب دائرية ذات توزيع متداخل بناءً على طريقة تصميم التجارب. تمت دراسة عدد رينولدز بقيمة 10000 الى 30000 ونسبة التثقيب بقيمة 3 إلى 7 كعوامل تصميمية للنموذج بينما تم اعتماد فرق درجة الحرارة، وكمية الحرارة المكتسبة، والكفاءة الحرارية كاستجابات لنموذج الارتباط. تم الحصول على ثلاثة ارتباطات مقابلة لكل استجابة مع شكلين لكل منهما (الفعلي والمشفّر) من خلال تحليل طريقة تصميم التجارب هذه. بينت النتائج أن نسبة التداخل كانت 193٪ للكفاءة الحرارية و148٪ لكمية الحرارة المكتسبة، بينما لم تتعد 18٪ لفرق درجات الحرارة. عند المستوى الأعلى لعدد رينولدز، تم تسجيل زيادة بنسبة 12.36٪ في الكفاءة الحرارية بسبب التثقيب على عكس سخان الهواء الشمسي غير المثقوب. يغير عدد رينولدز تأثيره على الكفاءة الحرارية بشكل كبير عندما يتغير مستوى التثقيب.
المقاييس
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
##plugins.generic.plaudit.displayName##
المراجع
González SM, Larsen SF, Hernández A, Lesino G. Thermal Evaluation and Modeling of a Double-Pass Solar Collector for Air Heating. Energy Procedia 2014; 57:2275-2284. DOI: https://doi.org/10.1016/j.egypro.2014.10.235
Alam T, Kim M-H. Performance Improvement of Double-Pass Solar Air Heater–a State of Art of Review. Renewable and Sustainable Energy Reviews 2017; 79:779-793. DOI: https://doi.org/10.1016/j.rser.2017.05.087
Kabeel A, Hamed MH, Omara Z, Kandeal A. Influence of Fin Height on the Performance of a Glazed and Bladed Entrance Single-Pass Solar Air Heater. Solar Energy 2018; 162:410-419. DOI: https://doi.org/10.1016/j.solener.2018.01.037
Abdulmalek SH, Al-Kayiem HH, Assadi MK, Gitan AA. Development of Multi Chamber Technique to Improve the Uniformity in Drying Application. 6th International Conference on Production, Energy and Reliability 2018: World Engineering Science & Technology Congress (ESTCON) 2018; Kuala Lumpur, Malaysia: p. 020007. DOI: https://doi.org/10.1063/1.5075555
Murali G, Nandan BS, Reddy NSK, Teja D, Kumar NK. Experimental Study on Double Pass Solar Air Heater with Fins at Lower and Upper Channel. Materials Today: Proceedings 2020; 21:578-583. DOI: https://doi.org/10.1016/j.matpr.2019.06.718
Gupta M, Kaushik S. Exergetic Performance Evaluation and Parametric Studies of Solar Air Heater. Energy 2008; 33(11):1691-1702. DOI: https://doi.org/10.1016/j.energy.2008.05.010
Mohammadi K, Sabzpooshani M. Comprehensive Performance Evaluation and Parametric Studies of Single Pass Solar Air Heater with Fins and Baffles Attached over the Absorber Plate. Energy 2013; 57:741-750. DOI: https://doi.org/10.1016/j.energy.2013.05.016
Yıldırım C, Solmuş İ. A Parametric Study on a Humidification–Dehumidification (Hdh) Desalination Unit Powered by Solar Air and Water Heaters. Energy Conversion and Management 2014; 86:568-575. DOI: https://doi.org/10.1016/j.enconman.2014.06.016
Verma P, Varshney L. Parametric Investigation on Thermo-Hydraulic Performance of Wire Screen Matrix Packed Solar Air Heater. Sustainable Energy Technologies and Assessments 2015; 10:40-52. DOI: https://doi.org/10.1016/j.seta.2015.02.002
Kumar A, Layek A. Energetic and Exergetic Based Performance Evaluation of Solar Air Heater Having Winglet Type Roughneѕѕ on Absorber Surface. Solar Energy Materials and Solar Cells 2021; 230:111147. DOI: https://doi.org/10.1016/j.solmat.2021.111147
Parsa H, Saffar-Avval M, Hajmohammadi M. 3D Simulation and Parametric Optimization of a Solar Air Heater with a Novel Staggered Cuboid Baffles. International Journal of Mechanical Sciences 2021; 205:106607. DOI: https://doi.org/10.1016/j.ijmecsci.2021.106607
Acır A, Canlı ME, Ata İ, Çakıroğlu R. Parametric Optimization of Energy and Exergy Analyses of a Novel Solar Air Heater with Grey Relational Analysis. Applied Thermal Engineering 2017; 122:330-338. DOI: https://doi.org/10.1016/j.applthermaleng.2017.05.018
Kumar R, Kumar A, Goel V. A Parametric Analysis of Rectangular Rib Roughened Triangular Duct Solar Air Heater Using Computational Fluid Dynamics. Solar Energy 2017; 157:1095-1107. DOI: https://doi.org/10.1016/j.solener.2017.08.071
Goel V, Kumar R, Bhattacharyya S, Tyagi V, Abusorrah AM. A Comprehensive Parametric Investigation of Hemispherical Cavities on Thermal Performance and Flow-Dynamics in the Triangular-Duct Solar-Assisted Air-Heater. Renewable Energy 2021; 173:896-912. DOI: https://doi.org/10.1016/j.renene.2021.04.006
Dezan DJ, Rocha AD, Ferreira WG. Parametric Sensitivity Analysis and Optimisation of a Solar Air Heater with Multiple Rows of Longitudinal Vortex Generators. Applied Energy 2020; 263:114556. DOI: https://doi.org/10.1016/j.apenergy.2020.114556
El-Khawajah M, Aldabbagh L, Egelioglu F. The Effect of Using Transverse Fins on a Double Pass Flow Solar Air Heater Using Wire Mesh as an Absorber. Solar Energy 2011; 85(7) :1479-1487. DOI: https://doi.org/10.1016/j.solener.2011.04.004
Mahmood A, Aldabbagh L, Egelioglu F. Investigation of Single and Double Pass Solar Air Heater with Transverse Fins and a Package Wire Mesh Layer. Energy Conversion and Management 2015; 89:599-607. DOI: https://doi.org/10.1016/j.enconman.2014.10.028
Sharma A, Varun, Kumar P, Bharadwaj G. Heat Transfer and Friction Characteristics of Double Pass Solar Air Heater Having V-Shaped Roughness on the Absorber Plate. Journal of Renewable and Sustainable Energy 2013; 5(2):023109. DOI: https://doi.org/10.1063/1.4794747
Tated MK, Singh DP, Dogra S. Heat Transfer and Friction Factor Characteristics of Double Pass Solar Air Heater Using W-Shaped Artificial Roughness Ribs. IOSR Journal Of Mechanical And Civil Engineering (IOSR-JMCE) 2015; 2278-1684.
Mohammed MF, Eleiwi MA, Kamil KT. Experimental Investigation of Thermal Performance of Improvement a Solar Air Heater with Metallic Fiber. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2021; 43(18): 2319-2338. DOI: https://doi.org/10.1080/15567036.2020.1833110
Eleiwi MA, Shallal HS. Thermal Performance of Solar Air Heater Integrated with Air–Water Heat Exchanger Assigned for Ambient Conditions in Iraq. International Journal of Ambient Energy 2022; 43(1): 2153-2164. DOI: https://doi.org/10.1080/01430750.2020.1722745
Ozgen F, Esen M, Esen H. Experimental Investigation of Thermal Performance of a Double-Flow Solar Air Heater Having Aluminium Cans. Renewable Energy 2009; 34(11):2391-2398. DOI: https://doi.org/10.1016/j.renene.2009.03.029
Akpinar EK, Koçyiğit F. Energy and Exergy Analysis of a New Flat-Plate Solar Air Heater Having Different Obstacles on Absorber Plates. Applied Energy 2010; 87(11):3438-3450. DOI: https://doi.org/10.1016/j.apenergy.2010.05.017
Zomorrodian A, Barati M. Efficient Solar Air Heater with Perforated Absorber for Crop Drying. 2010.
Nowzari R, Mirzaei N, Aldabbagh L. Finding the Best Configuration for a Solar Air Heater by Design and Analysis of Experiment. Energy Conversion and Management 2015; 100: 131-137. DOI: https://doi.org/10.1016/j.enconman.2015.04.058
Farhan AA, Sahi HA. Energy Analysis of Solar Collector with Perforated Absorber Plate. Journal of Engineering 2017; 23(9):89-102. DOI: https://doi.org/10.31026/j.eng.2017.09.07
Chabane F, Moummi N, Benramache S. Experimental Study of Heat Transfer and Thermal Performance with Longitudinal Fins of Solar Air Heater. Journal of Advanced Research 2014; 5(2):183-192. DOI: https://doi.org/10.1016/j.jare.2013.03.001
Mortazavi A, Ameri M. Conventional and Advanced Exergy Analysis of Solar Flat Plate Air Collectors. Energy 2018; 142:277-288. DOI: https://doi.org/10.1016/j.energy.2017.10.035
Qader BS, Supeni E, Ariffin M, Talib AA. RSM Approach for Modeling and Optimization of Designing Parameters for Inclined Fins of Solar Air Heater. Renewable Energy 2019; 136:48-68. DOI: https://doi.org/10.1016/j.renene.2018.12.099
Holman JP. Analysis of Experimental Data. In: Holman JP. Experimental Methods for Engineers. New York, USA: McGraw-Hill; 2001.
Gitan A. Flow Characteristics and Heat Transfer Enhancement at Interference Zone of Twin Pulsating Circular Jets. National University of Malaysia Bangi, Selangor, Malaysia; 2015.