.
محتوى المقالة الرئيسي
الملخص
.
المقاييس
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
##plugins.generic.plaudit.displayName##
المراجع
Kontoleon KJ, Theodosiou TG, Tsikaloudaki KG. The Influence of Concrete Density and Conductivity on Walls’ Thermal Inertia Parameters under a Variety of Masonry and Insulation Placements. Applied Energy 2013; 112: 325–337. DOI: https://doi.org/10.1016/j.apenergy.2013.06.029
Chua KJ, Chou SK, Yang WM, Yan J. Achieving Better Energy-Efficient Air Conditioning - A Review of Technologies and Strategies. Applied Energy 2013; 104: 87–104. DOI: https://doi.org/10.1016/j.apenergy.2012.10.037
Hasan AA. Thermal Conductivity of Building Materials in Iraq. Tikrit Journal of Engineering Science 2021; 28: 37–49. DOI: https://doi.org/10.25130/tjes.28.4.4
Waes MM. Optimum Building Wall Thickness under Actual Weather Conditions for Kirkuk City. Tikrit Journal of Engineering Sciences 2018; 25(4): 11–15. DOI: https://doi.org/10.25130/tjes.25.04.03
Schiavoni S, Bianchi F, Asdrubali F, others. Insulation Materials for the Building Sector: A Review and Comparative Analysis. Renewable and Sustainable Energy Reviews 2016; 62: 988–1011. DOI: https://doi.org/10.1016/j.rser.2016.05.045
Mohamed M, Almarshadi M. Energy Saving in Air Conditioning of Buildings. MATEC Web of Conferences 2018; 162: 5024, (1-5). DOI: https://doi.org/10.1051/matecconf/201816205024
Xing G, Yu J, Zhang C, Wu JX. A New Energy-Efficient Building System Based on Insulated Concrete Perforated Brick with A Sandwich. Civil Engineering Journal 2018; 4(7): 1467-1476. DOI: https://doi.org/10.28991/cej-0309187
Iffa E, Tariku F, Simpson WY. Highly Insulated Wall Systems with Exterior Insulation of Polyisocyanurate under Different Facer Materials: Material Characterization and Long-Term Hygrothermal Performance Assessment. Materials 2020; 13(15): 3373. DOI: https://doi.org/10.3390/ma13153373
Dafalla MA, Al Shuraim MI. Efficiency of Polystyrene Insulated Cement Blocks in Arid Regions. GEOMATE Journal 2017; 13(36): 35–38. DOI: https://doi.org/10.21660/2017.36.2779
Hasan AA, Aljawad RH, Jehhe KA. Experimental and Numerical Study of Thermal Performance and Energy Saving by Using Hollow Limestone Walls. Sc Bull, Series D 2019; 81(4): 301–312.
Mahlia TMI, Iqbal A. Cost Benefits Analysis and Emission Reductions of Optimum Thickness and Air Gaps for Selected Insulation Materials for Building Walls in Maldives. Energy 2010; 35(5): 2242–2250. DOI: https://doi.org/10.1016/j.energy.2010.02.011
Fraisse G, Johannes K, Trillat-Berdal V, Achard G. The Use of a Heavy Internal Wall with a Ventilated Air Gap to Store Solar Energy and Improve Summer Comfort in Timber Frame Houses. Energy and Buildings 2006; 38(4): 293–302. DOI: https://doi.org/10.1016/j.enbuild.2005.06.010
Ahuja A, Mosalam KM. Evaluating Energy Consumption Saving from Translucent Concrete Building Envelope. Energy and Buildings 2017; 153: 448–460. DOI: https://doi.org/10.1016/j.enbuild.2017.06.062
Yüksek Í. The Evaluation of Building Materials in Terms of Energy Efficiency. Periodica Polytechnica Civil Engineering 2015; 59(1): 45–58. DOI: https://doi.org/10.3311/PPci.7050
Faraj RH, Ali HFH, Sherwani AFH, Hassan BR, Karim H. Use of Recycled Plastic in Self-Compacting Concrete: A Comprehensive Review on Fresh and Mechanical Properties. Journal of Building Engineering 2020; 30: 101283. DOI: https://doi.org/10.1016/j.jobe.2020.101283
Faraj RH, Sherwani AFH, Jafer LH, Ibrahim DF. Rheological Behavior and Fresh Properties of Self-Compacting High Strength Concrete Containing Recycled PP Particles with Fly Ash and Silica Fume Blended. Journal of Building Engineering 2021; 34: 101667. DOI: https://doi.org/10.1016/j.jobe.2020.101667
Machado AL, Schneider RM, do Amaral AG. Soil-Cement Bricks as an Alternative for Glass Waste Disposal. American Scientific Research Journal for Engineering, Technology, and Sciences 2020; 71(1): 123–135.
Amaral MC, Siqueira FB, Destefani AZ, Holanda JNF. Soil--Cement Bricks Incorporated with Eggshell Waste. Proceedings of the Institution of Civil Engineers-Waste and Resource Management 2013; 166(3) :137–141. DOI: https://doi.org/10.1680/warm.12.00024
Ahmed H, Ibrahim IM, Radwan MA, Sadek MA, Elazab HA. Preparation and Analysis of Cement Bricks Based on Rice Straw. International Journal of Emerging Trends in Engineering Research 2020; 8(10): 7393–7403. DOI: https://doi.org/10.30534/ijeter/2020/1188102020
Kongkajun N, Laitila EA, Ineure P, Prakaypan W, Cherdhirunkorn B, Chakartnarodom P. Soil-Cement Bricks Produced from Local Clay Brick Waste and Soft Sludge from Fiber Cement Production. Case Studies in Construction Materials 2020; 13: e00448, (1-10). DOI: https://doi.org/10.1016/j.cscm.2020.e00448
Khaleel MH. Thermal Loads and Cost Reduction for a Residential House by Change Its Orientation and Add Roof Shading. Tikrit Journal of Engineering Sciences 2020; 27(4): 13–30. DOI: https://doi.org/10.25130/tjes.27.4.03
Ramesh N, Merzkirch W. Combined Convective and Radiative Heat Transfer in Side-Vented Open Cavities. International Journal of Heat and Fluid Flow 2001; 22(2): 180–187. DOI: https://doi.org/10.1016/S0142-727X(00)00080-1
Launder BE, Spalding DB. Lectures in Mathematical Models of Turbulence. New York: Academic Press; 1972.
Fluent A. Ansys Fluent Theory Guide. Ansys Inc. USA 2011; 15317: 724-746.
Pletcher RH, Tannehill JC, Anderson D. Computational Fluid Mechanics and Heat Transfer. 3rd ed., New York: CRC Press; 2012.
Versteeg HK. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Willey, New York 1995.
Rohsenow WM, Hartnett JP, Cho YI. Handbook of Heat Transfer. 3rd ed., USA: McGraw-Hill; 1998.
Hasan AA, Al-Bayati OAZ, Aljawad RH. the Reducing of Building Cooling Load by Using the Drilled Cement Mortar as a Finishing Material. UPB Scientific Bulletin, Series D: Mechanical Engineering 2022; 84(1): 149–162.