التخثير الكهربائي المقترن بعملية فنتون لمعالجة مياه الصرف النفطية باستخدام تصميم أسطواني من اقطاب التيتانيوم والالمنيوم

محتوى المقالة الرئيسي

Ahmad A. Aabid
https://orcid.org/0000-0003-0909-7331
Ibtehal K. Shakir
https://orcid.org/0009-0009-7088-4386

الملخص

   بسبب الأضرار الجسيمة التي تسببها المخلفات الصناعية للإنسان والحيوان والنبات وكذلك حقيقة أن مياه الصرف من المصافي تحتوي على العديد من المركبات الضارة وأن هذا النوع من الصناعة منتشر في معظم الدول ، فإن قضية حماية البيئة من المخلفات الصناعية هي  ذات أهمية قصوى في الوقت الحالي.


   تهدف الدراسة الحالية الى التخلص من الملوثات العضوية من مياه الصرف الصحي المرتبطة بمصفاة النفط العراقية في منطقة القيارة شمال العراق. خلال الدراسة اعتمد على فحص المتطلب الكيميائي للأوكسجين (COD) لتمثيل عينات من الملوثات العضوية. تم استخدام قطب كهربائي من التيتانيوم (كاثود) وقطب ألومنيوم (أنود) في عمليات التخثير الكهربي ودمجها انيا مع عملية فنتون الضوئية. حصلنا على النتائج والقيم النهائية من خلال استخدام طريقة Takeuchi عبر تطبيق Mini Tap والتقنيات الإحصائية: اعلى كفاءة لإزالة COD هي: 90.148, الانحراف المعياري 2.651 ، كان الظروف الافضل لهذه التجربة: pH = 8 ، 400 ملجم / لتر من بيروكسيد الهيدروجين ، 20 ملجم / لتر من كبريتات الحديدوز ، وكثافة التيار الكهربائي 15 مللي أمبير لكل سم2 , زمن التجربة 50 دقيقة.

المقاييس

يتم تحميل المقاييس...

تفاصيل المقالة

القسم
Articles

##plugins.generic.plaudit.displayName##

المراجع

Kober T, Schiffer HW, Densing D, Panos E. Global Energy Perspectives to 2060 – WEC's World Energy Scenarios 2019. Energy Strategy Review 2020; 31(1): 100523. DOI: https://doi.org/10.1016/j.esr.2020.100523

Abbas RN, Abbas AS. The Taguchi Approach in Studying and Optimizing the Electro-Fenton Oxidation to Reduce Organic Contaminants in Refinery Wastewater Using Novel Electrodes. Engineering, Technology & Applied Science Research 2022; 12(4): 8928–8935. DOI: https://doi.org/10.48084/etasr.5091

Ibrahim MM, Jaddo IA. Removal of Some Hydrocarbon Pollutants from Baiji Oil Refinery Wastewater Using Granular Activated Carbon Column. Tikrit Journal of Engineering Sciences 2013; 21(3): 84-95. DOI: https://doi.org/10.25130/tjes.21.3.10

Waddams A, Carruthers A, John E, Lee H. Petroleum Refining. Encyclopedia Britannica. 2023. https://www.britannica.com/technology/petroleum-refining

Al-Alawy AF, Al-Ameri MK. Treatment of Simulated Oily Wastewater by Ultrafiltration and Nanofiltration Processes. raqi Journal of Chemical and Petroleum Engineering 2017;18(1): 71–85. DOI: https://doi.org/10.31699/IJCPE.2017.1.6

Sharif SF. Enhancement of Phenol Removal Efficiency in Dora Refinery Wastewater Treatment Plant. Tikrit Journal of Engineering Sciences, 2008; 15(3): 18-36. DOI: https://doi.org/10.25130/tjes.15.3.02

AlJaberi FY, Abdulmajeed AB, Hassan AA, Ghadban ML. Assessment of an Electrocoagulation Reactor for the Removal of Oil Content and Turbidity from Real Oily Wastewater Using Response Surface Method. Recent Innovations in Chemical Engineering 2020; 13(1): 55-71. DOI: https://doi.org/10.2174/2405520412666190830091842

Eldos HI, Khan M, Zouari N, Saeed S, Al-Ghouti MA. Characterization and Assessment of Process Water from Oil and Gas Production: A Case Study of Process Wastewater in Qatar. Chemical and Environmental Engineering 2022;6(1): 100210. DOI: https://doi.org/10.1016/j.cscee.2022.100210

Al Sanad AJO. Elimination of Phenol Content in Baiji Refinery Wastewater Using Ash Supported Cupper. Tikrit Journal of Engineering Sciences2013; 20(4): 35-41. DOI: https://doi.org/10.25130/tjes.20.4.04

Rahmanisa RA, Widiasa IN. Application of the Fenton Process in the Petroleum Refinery Spent Caustic Wastewater Treatment. Reaktor 2020; 20(2): 96-102. DOI: https://doi.org/10.14710/reaktor.20.2.96-102

Tamara KH. Removal of Cobalt Ions from Wastewater by Batch and Flowing Forward Osmosis Processes. Journal of Ecological Engineering 2019; 20(4): 121-126. DOI: https://doi.org/10.12911/22998993/102796

Tamara KH, and Nidaa A J. Removal Of Crystal Violet And Methylene Blue From Synthetic Industrial Wastewater Using Fennel Seed as an Adsorbent. Journal of Engineering Science and Technology 2019; 14(19): 2947 – 2963.

Tamara KH, Nidaa AJ. A Comparison Study between Chemical Coagulation and Electrocoagulation Processes for The Treatment of Wastewater Containing Reactive Blue Dye. 3rd International Conference on Materials Engineering and Science [December 28-30, 2020 - Kuala Lumpur, Malaysia]. p 1946–1950,

Fındık S. Treatment of Petroleum Refinery Effluent Using Ultrasonic Irradiation. Polish Journal of Chemical Technology 2018; 20(4):20–25. DOI: https://doi.org/10.2478/pjct-2018-0049

Abdi FB, Samuel ZA, Debela SK, Amibo TA. Wastewater Treatment Using a Photoelectrochemical Oxidation Process for the Coffee Processing Industry Optimization of Chemical Oxygen Demand (COD) Removal Using Response Surface Methodology. International Journal of Analytical Chemistry 2022; 1734411:1-12. DOI: https://doi.org/10.1155/2022/1734411

Ibrahim HM, Salman RH. Real wastewater Treatment by Electrocoagulation- Electro-oxidation Combined System: Optimization using Taguchi Approach. Egyptian Journal of Chemistry 2022;65(3):135-145.

Jasim MA, AlJaberi FY. Treatment of Oily Wastewater by Electrocoagulation Technology: a General Review (2018-2022): Review Paper. Journal of Electrochemical Science and Engineering 2022;13(2):361-372. DOI: https://doi.org/10.5599/jese.1472

Rakhmania et al. Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review. Sustainability 2022; 14(4):1985. DOI: https://doi.org/10.3390/su14041985

Alejandra MF et al. Optimization of the Electrocoagulation Process with Aluminum Electrodes for Rainwater Treatment. Frontiers in Environmental Science 2022;10(1):1-12. DOI: https://doi.org/10.3389/fenvs.2022.860011

Ibrahim HM, Salman RH. Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems. Iraqi Journal of Chemical and Petroleum Engineering 2022;23(1):31–41. DOI: https://doi.org/10.31699/IJCPE.2022.1.5

Naje AS, Chelliapan S, Zakaria Z, Abbas SA. Enhancement of an Electrocoagulation Process for the Treatment of Textile Wastewater under Combined Electrical Connections Using Titanium Plates. International Journal of Electrochemical Science 2015;10(6):4495-4512. DOI: https://doi.org/10.1016/S1452-3981(23)06640-3

Zhang MH, Dong H, Zhao L, Wang DX, Meng D. A Review on Fenton Process for Organic Wastewater Treatment Based on Optimization Perspective. Science of the Total Environment 2019;670(1):110–121. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.180

Rubio-Clemente R, Chica E, Peñuela GA. Optimization Method to Determine the Kinetic Rate Constants for the Removal of Benzo[a]pyrene and Anthracene in Water through the Fenton Process. Water 2022;14(21):3381. DOI: https://doi.org/10.3390/w14213381

Tejera J, Hermosilla D, Gascó A, Negro C, Blanco A. Combining Coagulation and Electrocoagulation with UVA-LED Photo-Fenton to Improve the Efficiency and Reduce the Cost of Mature Landfill Leachate Treatment. Molecules 2021;26(21):6425. DOI: https://doi.org/10.3390/molecules26216425

Hernández-Francisco E, Peral J, Blanco-Jerez LM. Removal of Phenolic Compounds from Oil Refinery Wastewater by Electrocoagulation and Fenton/Photo-Fenton Processes. Journal of Water Process Engineering 2017;19(1):96-100. DOI: https://doi.org/10.1016/j.jwpe.2017.07.010

Flores N et al. Treatment of Olive Oil Mill Wastewater by Single Electrocoagulation with Different Electrodes and Sequential Electrocoagulation/Electrochemical Fenton-Based Processes. Journal of Hazardous Materials 2018; 347(1):58-66. DOI: https://doi.org/10.1016/j.jhazmat.2017.12.059

Kadhim RQ. Performance of Combined Electrocoagulation advanced Electrochemical Oxidation Used for Oil Field Produced Water Treatment. M.Sc. Thesis, University of Baghdad, Baghdad, Iraq: 2019.

Alkurdi SS, Abbar AH. Removal of COD from Petroleum Refinery Wastewater by Electro-Coagulation Process Using SS/Al Electrodes. IOP Conference Series: Materials Science and Engineering 2020;870(1):012052. DOI: https://doi.org/10.1088/1757-899X/870/1/012052

Ibrahim HM. Study the Optimization of Petroleum Refinery Wastewater Treatment by Electrocoagulation and Electro-Oxidation. M.Sc. Thesis, University of Baghdad, Baghdad, Iraq:2021.

Ibarra-Taquez HN, GilPavas E, Blatchley ER, Gómez-García MA, Dobrosz-Gómez I. Integrated Electrocoagulation-Electrooxidation Process for the Treatmentof Soluble Coffee Effluent: Optimization Of COD Degradation and Operation Time Analysis. Journal of Environmental Management 2017;200(1):530-538. DOI: https://doi.org/10.1016/j.jenvman.2017.05.095

Bensadok K, El Hanafi N, Lapicque F. Electrochemical Treatment of Dairy Effluent Using Combined Al and Ti/Pt Electrodes System. Desalination 2011;280(1-3):244-251. DOI: https://doi.org/10.1016/j.desal.2011.07.006

Malakootian M, Heidari MR. Removal of Phenol from Steel Wastewater by Combined Electrocoagulation with Photo-Fenton. Water Science and Technology 2018;78(6):1260–1267. DOI: https://doi.org/10.2166/wst.2018.376

Moreira FC, Boaventura RA, Brillas E,. Vilar VJ. Degradation of Trimethoprim Antibiotic by UVA Photoelectro-Fenton Process Mediated by Fe(III)–Carboxylate Complexes. Applied Catalysis B: Environmental 2015;162(1):34-44. DOI: https://doi.org/10.1016/j.apcatb.2014.06.008

El-Ghenymy A, Rodríguez RM, Arias C, Centellas F, Garrido JA, Cabot PL, Brillas E. Electro-Fenton and Photoelectro-Fenton Degradation of the Antimicrobial Sulfamethazine Using a Boron-Doped Diamond Anode and an Air-Diffusion Cathode. Journal of Electroanalytical Chemistry 2013;701(1):7-13. DOI: https://doi.org/10.1016/j.jelechem.2013.04.027

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.