Experimental Design of Oxidative Desulfurization of Kerosene Through Response Surface Methodology (RSM)
محتوى المقالة الرئيسي
الملخص
تمت دراسة إزالة الكبريت المؤكسدة (ODS) من الكيروسين كوقود نموذجي مع الهواء کمؤکسد باستخدام محفزين مختلفين مدعومين بالنانو سيليكا ، وهما CuO / SiO2 (CAT-1) و CuO / TiO2-SiO2 (CAT-2) ، والتي وُجد أنها تعطي 87٪ و 99.22٪ تحويل كبريت في الكيروسين على التوالي. كانت مادة الکيروسين موضوع تحقيق تجريبي في هذه الدراسة. درجة الحرارة والوقت هما متغيران تم دراستهما فيما يتعلق بتأثيرهما على إزالة الكبريت. تم تطبيق منهجية سطح الاستجابة أو RSM لهذا الغرض. بناءً على التصميم المركب المركزي (CCD) ، تم اختيار وقت و درجة الحرارة لتحسين التحويل. أظهرت النتائج أن الحد الأقصى للتحويل الذي تنبأ به CAT-1 كان 99.5٪ عند 140 دقيقة و 140.1 درجة مئوية وبواسطة CAT-2 كان 99.7٪ عند 100.1 دقيقة و 140.1 درجة مئوية.
لوحظ أن التحويل الأقصى المتوقع بواسطة CAT-1 كان 99.5٪ عند 140 دقيقة (وقت) و 180 (درجة حرارة) وبواسطة CAT-2 كان 99.7٪ عند 100.1 دقيقة (وقت) و 140.1 (درجة حرارة). تم تزويد بيانات المعدل بنموذج حركي تجريبي. تم تحديد طاقة التنشيط لـ CAT-1 و CAT-2 لتكون Ea = 28.2 kJ/mol و Ea = 38.7 kJ/mol، على التوالي.
المقاييس
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
##plugins.generic.plaudit.displayName##
المراجع
Hamza NH, Ekaab NS, Chaichan MT. Impact of using Iraqi Biofuel–Kerosene Blends on Coarse and Fine Particulate Matter Emitted from Compression Ignition Engines. Alexandria Engineering Journal 2020; 59(3): 1717-1724. DOI: https://doi.org/10.1016/j.aej.2020.04.031
Houda S, Lancelot C, Blanchard P, Poinel L, Lamonier C. Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review. Catalysts 2018; 8(9): 344, (1-26). DOI: https://doi.org/10.3390/catal8090344
Betiha MA, Rabie AM, Ahmed HS, Abdelrahman AA, El-Shahat MF. Oxidative Desulfurization using Graphene and its Composites for Fuel Containing Thiophene and its Derivatives: an Update Review. Egyptian Journal of Petroleum 2018; 27(4): 715-730. DOI: https://doi.org/10.1016/j.ejpe.2017.10.006
Yu G, Wu X, Wei L, Zhou Z, Liu W, Zhang F, Qu Y, Ren Z. Desulfurization of Diesel Fuel by One-Pot Method with Morpholinium-Based Brønsted Acidic Ionic Liquid. Fuel 2021; 296: 120551, (1-10). DOI: https://doi.org/10.1016/j.fuel.2021.120551
Chen L, Xu Y, Wang B, Yun J, Dehghani F, Xie Y, Liang X. Mg-Modified CoMo/Al2O3 with Enhanced Catalytic Activity for the Hydrodesulfurization of 4, 6-Dimethyldibenzothiophene. Catalysis Communications 2021; 155: 106316, (1-6). DOI: https://doi.org/10.1016/j.catcom.2021.106316
Kargar H, Ghahramaninezhad M, Shahrak MN, Balula SS. An Effective Magnetic Catalyst for Oxidative Desulfurization of Model and Real Fuels: Fe3O4/ZIF-8/TiO₂. Microporous and Mesoporous Materials 2021; 317: 110992. DOI: https://doi.org/10.1016/j.micromeso.2021.110992
Choi AES, Roces S, Dugos N, Arcega A, Wan MW. Adsorptive Removal of Dibenzothiophene Sulfone from Fuel Oil using Clay Material Adsorbents. Journal of Cleaner Production 2017; 161: 267-276. DOI: https://doi.org/10.1016/j.jclepro.2017.05.072
Sinhmar PS, Tiple A, Gogate PR. Combined Extractive and Oxidative Desulfurization Approach Based on Ultrasound and Ultraviolet Irradiation with Additives for Obtaining Clean Fuel. Environmental Technology & Innovation 2021; 22: 101487. DOI: https://doi.org/10.1016/j.eti.2021.101487
Jarullah AT, Aldulaimi SK, Al-Tabbakh BA, Mujtaba IM. A New Synthetic Composite Nano-Catalyst Achieving an Environmentally Friendly Fuel by Batch Oxidative Desulfurization. Chemical Engineering Research and Design 2020; 160: 405-416. DOI: https://doi.org/10.1016/j.cherd.2020.05.015
Chang J, Wang A, Liu J, Li X, Hu Y. Oxidation of Dibenzothiophene with Cumene Hydroperoxide on MoO3/SiO2 Modified with Alkaline Earth Metals. Catalysis Today 2010; 149(1-2): 122-126. DOI: https://doi.org/10.1016/j.cattod.2009.04.026
Chopra R, Kashyap N, Kumar A, Banerjee D. Chemical Synthesis of Copper Oxide Nanoparticles Study of Its Optical and Electrical Properties. International Journal of Engineering Research & Technology (IJERT) 2020; 9(1): 258-261. DOI: https://doi.org/10.17577/IJERTV9IS010160
Tenkyong T, Bachan N, Raja J, Kumar PN, Shyla JM. Investigation of Sol-Gel Processed CuO/SiO Nanocomposite as a Potential Photoanode Material. Materials Science-Poland 2015; 33(4): 826-834. DOI: https://doi.org/10.1515/msp-2015-0097
Wang H, Jibrin I, Zeng X. Catalytic Oxidative Desulfurization of Gasoline using Phosphotungstic Acid Supported on MWW Zeolite. Frontiers of Chemical Science and Engineering, 2020; 14: 546-560. DOI: https://doi.org/10.1007/s11705-019-1842-z
Kemp K, Griffiths J, Campbell S, Lovell K. An Exploration of the Follow-Up Up Needs of Patients with Inflammatory Bowel Disease. Journal of Crohn's and Colitis 2013; 7(9): 386-395. DOI: https://doi.org/10.1016/j.crohns.2013.03.001
Mohammed HJ, Jarullah AT, Al-Tabbakh BA, Hussein HM. Preparation of Synthetic Composite Nano-Catalyst for Oxidative Desulfurization of Kerosene. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2023; 45(1): 1672-1685. DOI: https://doi.org/10.1080/15567036.2023.2181890
Lu MC, Biel LCC, Wan MW, de-Leon R, Arco S. The Oxidative Desulfurization of Fuels with a Transition Metal Catalyst: A Comparative Assessment of Different Mixing Techniques. International Journal of Green Energy, 11(8): 833-848. DOI: https://doi.org/10.1080/15435075.2013.830260
Ghahremani H, Nasri Z, Eikani MH. Application of Response Surface Methodology (RSM) for Optimizing and Statistical Analysis of Ultrasound-Assisted Oxidative Desulfurization (UAOD) of an Iranian Heavy Crude Oil. Petroleum Science and Technology 2023: 1-21. DOI: https://doi.org/10.1080/10916466.2023.2168696
Zaid H, Al-sharify Z, Hamzah MH, Rushdi S. Optimization of Different Chemical Processes using Response Surface Methodology-A Review: Response Surface Methodology. Journal of Engineering and Sustainable Development 2022; 26(6): 1-12. DOI: https://doi.org/10.31272/jeasd.26.6.1
Owolabi RU, Usman MA, Anuoluwapo AD, Oguamanam OP. Modelling, Optimization and Green Metrics Evaluation of Bio-Catalytic Synthesis of Biodiesel. Tikrit Journal of Engineering Sciences 2020; 27(3): 17-30. DOI: https://doi.org/10.25130/tjes.27.3.03
Johann Sienz. Applied Mathematical Modelling Simulation and Computation for Engineering and Environmental Systems. Uniwersytet Śląski. Wydział Matematyki, Fizyki i Chemii, 2013.
Joni I, Rukiah R, Panatarani C. Synthesis of Silica Particles by Precipitation Method of Sodium Silicate: Effect of Temperature, pH and Mixing Technique. AIP Conference Proceedings 2020; 2219(1): 080018(1-10). DOI: https://doi.org/10.1063/5.0003074
Tohidi SH, Grigoryan G, Sarkeziyan V, Ziaie F. Effect of Concentration and Thermal Treatment on the Properties of Sol-Gel Derived CuO/SiO2 Nanostructure. Iranian Journal of Chemistry and Chemical Engineering 2010; 29(2): 27–35.
Vazquez NI, Gonzalez Z, Ferrari B, Castro Y. Synthesis of Mesoporous Silica Nanoparticles by Sol–Gel as Nanocontainer for Future Drug Delivery Applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 2017; 56(3): 139-145. DOI: https://doi.org/10.1016/j.bsecv.2017.03.002
Rahimi M, Shahhosseini S, Movahedirad S. Continuous-Flow Ultrasound Assisted Oxidative Desulfurization (UAOD) Process: An Efficient Diesel Treatment by Injection of the Aqueous Phase. Ultrasonics Sonochemistry 2017; 39: 611-622. DOI: https://doi.org/10.1016/j.ultsonch.2017.05.033
Dana M, Sobati MA, Shahhosseini S, Ansari, A. Optimization of a Continuous Ultrasound Assisted Oxidative Desulfurization (UAOD) Process of Diesel using Response Surface Methodology (RSM) Considering Operating Cost. Chinese Journal of Chemical Engineering 2020; 28(5): 1384-1396. DOI: https://doi.org/10.1016/j.cjche.2019.12.007
Karami E, Sobati MA, Khodaei B, Abdi K. An Experimental Investigation on the Ultrasound-Assisted Oxidation of Benzothiophene in Model Fuel: Application of Response Surface Methodology. Applied Thermal Engineering 2017; 118: 691-702. DOI: https://doi.org/10.1016/j.applthermaleng.2017.03.028
Rasmuson, A., Andersson, B., Olsson, L., & Andersson, R. (2014). Mathematical modeling in chemical engineering. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781107279124
Khodaei B, Sobati MA, Shahhosseini S. Optimization of Ultrasound-Assisted Oxidative Desulfurization of High Sulfur Kerosene Using Response Surface Methodology (RSM). Clean Technologies and Environmental Policy 2016; 18(8): 2677-2689. DOI: https://doi.org/10.1007/s10098-016-1186-z
Alben KT. Books and Software: Design, analyze, and optimize with Design-Expert. 2002. DOI: https://doi.org/10.1021/ac0219703
Rezvani MA, Khandan S. Synthesis and Characterization of a New Nanocomposite (FeW11V@ CTAB‐MMT) As an Efficient Heterogeneous Catalyst for Oxidative Desulfurization of Gasoline. Applied Organometallic Chemistry 2018; 32(11): e4524. DOI: https://doi.org/10.1002/aoc.4524
Ahmed GS, Jarullah AT, Al-Tabbakh BA, Mujtaba IM. Design of an Environmentally Friendly Reactor for Naphtha Oxidative Desulfurization by Air Employing a New Synthetic Nano-Catalyst Based on Experiments and Modelling. Journal of Cleaner Production 2020; 257: 120436 (1-38). DOI: https://doi.org/10.1016/j.jclepro.2020.120436
Jarullah A, Ahmed AM, Hussein HM, Ahmed AN, Mohammed HJ. Evaluation of Synthesized Pt/HY-H-Mordenite Composite Catalyst for Isomerization of Light Naphtha. Tikrit Journal of Engineering Sciences 2023; 30(1): 94-103. DOI: https://doi.org/10.25130/tjes.30.1.9
Jarullah AT, Ahmed AN, Ahmed BA, Ahmed AM. Design of New Composites Nano-Catalysts for Naphtha Reforming Process: Experiments and Process Modeling. Tikrit Journal of Engineering Sciences 2023; 30(2): 46-59. DOI: https://doi.org/10.25130/tjes.30.2.6