Numerical Study of Natural Convection from Two Parallel Horizontal Cylinders Enclosed by Circular Cylinder
Main Article Content
Abstract
In this paper, numerical solution is presented for the steady state, two dimensional natural convection heat transfer from two parallel horizontal cylinders enclosed by circular cylinder. The inner cylinders are heated and maintained at constant surface temperature, while the outer cylinder is cooled at constant surface temperature. Boundary fitted coordinate system is used to solve governing equations. The vorticity-stream function and energy equations is solved using explicit finite deference method and stream function equation solved by successive iteration method. (20)Deferent cases are studied cover rang of Rayleigh number from (1,000) to (25,000) based on the inner cylinder diameter. These cases study the effect of the varying inner cylinders position horizontally and vertically within outer cylinder on the heat transfer and buoyancy that causes the flow. Outputs are displayed in terms of streamline, isothermal contours and local and average Nusselt number. The results showed that the position of the inner cylinders highly affects the heat transfer and flow movements in the gap. At low Rayleigh numbers the average Nusselt number increases with increase of horizontal distance between inner cylinders but the state is reversed at high Rayleigh numbers, while the average Nusselt number is increases with inner cylinder moving down at all Rayleigh numbers. The optimal position of inner cylinders for maximum and minimum heat transfer is located at each Rayleigh number so can be employed in isolation process or cooling process.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
Kuehn,T.H. and Goldstin, R. J. An Experimental And Theoretical Study Of Natural Convection In The Annulus Between Horizontal Concentric Cylinders , J. Fluid Mech. (1976), Vol. 74, Part 4,Pp.695-719. DOI: https://doi.org/10.1017/S0022112076002012
Charrir-Mojtabi, M. C., Mojtabi, A. and Caitagirone, J. P. Numerical Solution Of A Flow Due To Natural Convection In Horizontal Cylindrical Annulus J. Heat Transfer, Feb. (1979), Vol. 101, pp.171-173. DOI: https://doi.org/10.1115/1.3450911
Faruak, B. and Guceri, S. I. Laminar And Turbulent Natural Convection In The Annulus Between Horizontal Concentric Cylinders , J. Heat Transfer, Nov. (1982), Vol. 104, Pp.631-636 DOI: https://doi.org/10.1115/1.3245178
Kuehn,T.H. and Goldstin, R. J. An Experimental Study Of Natural Convection Heat Transfer In Concentric And Eccentric Horizontal Cylindrical Annuli J. Heat Transfer, Nov. (1978), Vol. 100, Pp. 635-640. DOI: https://doi.org/10.1115/1.3450869
Cho, C. H., Chang, K. S. and Park, K. H. Numerical Simulation Of Natural Convection In Concentric And Eccentric Horizontal Cylindrical Annuli J. Heat Transfer, Nov. (1982), Vol. 104, Pp. 624-630. DOI: https://doi.org/10.1115/1.3245177
Prusa, J. and Yao, L. S. Natural Convection Heat Transfer Between Eccentric Horizontal Cylinders J. Heat Transfer, Feb. (1983), Vol. 105, Pp. 108-115 DOI: https://doi.org/10.1115/1.3245527
Guj, G. and Stella, F. Natural Convection In Horizontal Eccentric Annuli: Numerical Study Numer. Heat Transfer, 27, (1995), Pp89-105. DOI: https://doi.org/10.1080/10407789508913690
Naylor, D., Badr, H. M. and Tarasuk, J. D. Experimental And Numerical Study Of Natural Convection Between Two Eccentric Tubes Int. J. Heat Mass Transfer, (1989), No.1, Vol. 32,pp. 171-181. DOI: https://doi.org/10.1016/0017-9310(89)90100-2
Tsui, Y. T. and Tremblay, B. On Transient Natural Convection Heat Transfer In The Annulus Between Concentric Horizontal Cylinders With Isothermal Surfaces Int. J. Heat &Mass Transfer, (1984), No.1, Vol.27, Pp. 103-111 DOI: https://doi.org/10.1016/0017-9310(84)90242-4
o]Shu, C., Xue, H. and Zhu, Y. D. Numerical Study Of Natural Convection In An Eccentric Annulus Between A Square Outer Cylinder And A Circular Inner Cylinder Using DQ Method Int. J. Heat Mass Transfer, (2001), No.44, Pp.3321- 3333. DOI: https://doi.org/10.1016/S0017-9310(00)00357-4
النداوي، عبد السلام داود، إيجاد توزيع اجهادات القص على أسطح اسطواننين داخليين محاطبن باسطو انة ثالثة خارجية نتيجة لحركة المائع المحصور بين أسطح الاسطوانات الثلاث بتأثير الحمل الطبيعي المجلة العلمية لجامعة تكريت/ قطاع العلوم الهنسية، عدد 1 ، المجلد 1 (1994) ص25 -40.
Robert, W. Hornbeck, Numerical Marching Techniques For Fluid Flows With Heat Transfer ,NASA, (1973.
Fletcher, C. A. J. and Srinivas, K. Computational Techniques For Fluid Mechanics 2 Springier series in Computational Physics, Springier- Verlag Berlin Heidelberg, (1988).
Thompson, J. F., Warsi, Z. U. A. and Mastin, C. W. Numerical Grid Generation North-Holland, Amsterdam, (1985).
Filipiak, M. Mesh Generation Edinburgh Parallel Computing Center, The University of Edinburgh, (1996).
Broughton, R. C. & Oliver, A. J. A Numerical Model For Convection In Complex Two-Dimensional Geometrices And Its Application To Buoyancy Flow In Power Cable ,Int.Heat Transfer Conference Vol.2 Pp. 447-451, 1986. DOI: https://doi.org/10.1615/IHTC8.3640