Kinetic Models Study of Hydrodesulphurization Vacuum Distillate Reaction
Main Article Content
Abstract
This study deals with kinetics of hydrodesulphurization (HDS) reaction of vacuum gas oil (611-833) K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 – 650) K, medium vacuum gas oil (650- 690) K, heavy vacuum gas oil (690-727) K and very heavy vacuum gas oil (727-833) K. The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643) K,liquid hourly space velocity range (1.5-3.75) h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt. The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea), enthalpy of activation ( H*) and entropy (
S*) were calculated based on the values of rate constant (k2) and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
Hobson, G. D.,”Modern Petroleum Technology”, 5th Ed., Part I, 1984.
Antos, G. J. and Wang,L., ” Successful Commercial Hydrocracking Catalysts Tools and Methodologies”,2000.
Speight, J. G., “The Desulphurization of Heavy Oil and Residua”, 1981.
Thomas, C. L.,” Catalytic Process and Proven Catalysts”, Academic Press, 1970.
Satterfield, C. N.; AIChE J., 21, 209, 1975. DOI: https://doi.org/10.1002/aic.690210202
Al-Dahhan, M. H., Larachi, F., Dudokovic, M. P., and Laurent, A.; Ind. Eng. Chem. Res., 36, 3292, 1997. DOI: https://doi.org/10.1021/ie9700829
Gianetto, A., Baldi, G., Specchia, V., and Sicardi, S.; AIChE J., 24, 1087, 1978. DOI: https://doi.org/10.1002/aic.690240622
Harriott, P.; Chemical Reactor Design; Marcel Dekker, Inc., New York, Basel, 2002. DOI: https://doi.org/10.1201/9780203910238
Frye, C. G. and Mosby, J. F., CEP, 63(9), 66, 1967. DOI: https://doi.org/10.1093/rheumatology/9.2.63
Chu, C. I. and Wang I., Ind. Eng. Chem. Process. Des. Dev., 21, 338, 1982. DOI: https://doi.org/10.1021/i200017a020
Mohammed, A-H. A. K., and Hankish K., J. Petrol. Res., 4 (2), 37, 1985.
Henry, H. C. and Gilbert, J. B.; I&EC Proc. Dev., 12(3), 328, 1973. DOI: https://doi.org/10.1021/i260047a019
Hochman, J. M., Efforn, E., I&EC.Fund., 8, 63, 1969. DOI: https://doi.org/10.1021/i160029a011
Mohunta , D. M. and Laddha, G. S., Chem. Eng. Sci., 20, 1069, 1956. DOI: https://doi.org/10.1016/0009-2509(65)80109-9
Mears, D. E. and Hulburt, H. M.; Chem. React. Eng., ACS, Monograph Series, 123,
Shalit, H. and Schuman, S. C., Catalysis Review, 3, 300, 1971.
Mohammed,A-H. A-K. Hankish K. and Abbas K., Fuel, 6(6), 593, 1988. DOI: https://doi.org/10.1080/08843758808915905
Parayannakos N., Applied Catalysis, 24, 99, 1986. DOI: https://doi.org/10.1016/S0166-9834(00)81260-9
Rahman, A. M., M. Sc. Thesis, Baghdad University, 2000.
Areff, H. A., M. Sc. Thesis, Tikrit University, 2001.
Iannlbllo, A., Marengo, S., Burgio, G., Baldl, G., and Specchia, V., Ind. Eng. Chem. Process Des. Dev.; Vol. 24; pp:-531-537; 1985. DOI: https://doi.org/10.1021/i200030a003
Mann, R. S., Sambi, I. S., and Khulbe, C. K., Ind. Eng. Chem. Reas., 27, 1788- 92, 1988. DOI: https://doi.org/10.1021/ie00082a009
Froment, G. F., Depauw, G. A., and Vanrysselberghe, V.; Ind. Eng. Chem. Res., 33, 2975-2988, 1994. DOI: https://doi.org/10.1021/ie00036a012
Mohammed, A-H. A-K., and Hankish, K., Fuel, July, vol.64, 921-24, 1985. DOI: https://doi.org/10.1016/0016-2361(85)90144-9