Carbon Dioxide Absorption in Packed Column in Non-Newtonian Fluid
Main Article Content
Abstract
Absorption of carbon dioxide into carbonate solution (Na2CO3) with PAM (non-Newtonian fluid) has been performed in a countercurrent packed column (0.075m i.d. ×1.25 m height) packed with glass Raschig rings (1×1cm) to a depth of 1m. The influence of liquid flow rate, gas flow rate, liquid temperature, and polyacrylamind (PAM) concentration on the absorption rate, overall mass transfer coefficient and the reaction kinetics regime are studied at constant carbonate concentration and atmospheric pressure. The results show that the absorption rate and overall mass transfer coefficient increases with increasing liquid flow rate and temperature. The mass transfer coefficient decreases with increasing gas flow rate while the absorption rate of carbon dioxide is virtually independent of gas flow rate. This indicates that carbon dioxide absorption is liquid film controlled. Increasing PAM concentration results of reduction of absorption rate and overall mass transfer coefficient. The reaction kinetics between carbon dioxide and carbonate solution with PAM was obtained as a pseudo first order reaction (Hatta number, Ha >>1).
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
F., Zou, H.K., Chu, G.W., Shao, L., and Chan, J.F., 145, 337, 2009.
Gomez-Diaz, D., and Navaza, J.M., J.Chem.Technol.Biotechnol. 79, 1105, 2004. DOI: https://doi.org/10.1002/jctb.1092
Park, S.W., Kim, T.Y., Kim, B.S., and Lee, J.W., Korea-Australia Rheology J., 16, 35, 2004.
Park, S.W., Choi, B.B., and Lee, J.W., J.Ind.Eng.Chem. 13,170, 2007.
Park, S.W., Choi, B.B., and Lee, J.W., J.Ind.Eng.Chem. 14,303, 2008. DOI: https://doi.org/10.1016/j.jiec.2008.01.002
Jiao, Z., Xueqing, Z., and Juntag, Y., Biotechnol. Technol., 12,729, 1998. DOI: https://doi.org/10.1023/A:1008808500344
Alvarez, E., Correa, J.M., Riverol, C., and Navaza, J.M., Int. Commun. Heat Mass Transfer, 27, 93, 2000. DOI: https://doi.org/10.1016/S0735-1933(00)00087-7
Park, S.W., Choi, B.B., and Lee, J.W., J.Ind.Eng.Chem. 13, 7, 2007.
Park, S. W., Choi, B. B., & Lee, J. W., Korea -Australia Rheology J., 17,199, 2005.
Bosch, H., Versteeg G.F. and Van Swaaij, W.P.M, Chem. Eng. Sci. 44, 2723, 1989. DOI: https://doi.org/10.1016/0009-2509(89)85215-7
Sanyal, D., Vasishtha, N., and Saraf, D.N., Ind.Eng.Chem.Res. , 27, 2149, 1988.
Versteeg, G. F.; Van Dijck, L. A. J.; and Vanwaaij, W. P. M , Chem. Eng. Commun., 144,113, 1996. DOI: https://doi.org/10.1080/00986449608936450
Versteeg, G.F., Blauwhoff, P.M.M., and Van Swaaij. W P.M., Chem. Eng. Sci. 42, 1103, 1987. DOI: https://doi.org/10.1016/0009-2509(87)80060-X
Versteeg, G.F., and Van Swaaij, W.P.M., J. Chem. Eng. Data 33, 29, 1988. DOI: https://doi.org/10.1021/je00051a011
Wilke, C.R. and Chang, P., AIChE J. 1, 264, 1955. DOI: https://doi.org/10.1002/aic.690010222
Astarita,G. , Savage ,D.W. ,and Bisio ,A. , Gas treating with chemical solvent ,Wily ,New York,1983.
Danckwerts, P.V., Sharma, M.M., The Chem.Eng. (October), 244, 1966.
Danckwerts, P.V., Gas Liquid Reactions, McGraw-Hill, Londres, 1970. DOI: https://doi.org/10.1149/1.2407312
Sanyal ,D., Vasishtha,N. , and Saraf ,D.N., Ind. Eng. Chem. Res., 27, 1988, 2149. DOI: https://doi.org/10.1021/ie00083a032
Farah, T.J., MSc.Thesis, University of Technology, 2001.
Wilson, E.J., and Geankoplis, C.J., Ind.Eng.Fund. 5, 9, 1966. DOI: https://doi.org/10.1021/i160017a002
Bird, R.B., Stewart, W.E., and Lightfoot, E.N., “Transport phenomena “, John Wiley and Sons, Inc., 1960.
Charpentier, J.C., Trans.IChemE. 60,131, 1982. DOI: https://doi.org/10.1007/BF00451500
Cryder, D.S., and Maloney, J.O., Trans.Am.Inst.Chem.Eng. 37, 827, 1941.
Yih, S.M., and Sund, C.C., The Chem.Eng.J. , 34, 65, 1987. DOI: https://doi.org/10.1021/cen-v065n014.p034
Thomas, B.D., Cokelet, G.R., Hoopes, J.W., and Vermeulen, T., “Advances in chemical engineering “, New York, 1981.