Dual Performance Optimization of 6-DOF Robotic Arm Trajectories in Biomedical Applications

Main Article Content

Kian Raheem Qasim
https://orcid.org/0000-0002-9145-3245
Yousif Al Mashhadany
https://orcid.org/0000-0003-3943-8395
Esam Taha Yassen
https://orcid.org/0000-0002-6980-6606

Abstract

For the first time, dual-performance perfection technologies were used to kinematically operate sophisticated robots. In this study, the trajectory development of a robot arm is optimized using a dual-performance perfection technique. The proposed approach alters the robot arm's Kinematics by creating virtual points even if the robotic system is not redundant to make it kinematically suitable for biomedical applications. In the suggested method, an appropriate objective function is chosen to raise one or maybe more performance measures while lowering one or more kinematic characteristics of a robot arm. The robot arm's end effector is set in place at the crucial locations, and the dual performance precision algorithm changes the joints and virtual points due to the robot arm's self-motion. As a result, the ideal values for the virtual points are established, and the robot arm's design is changed. Accordingly, this method's ability to visualize modifications made to the processor's design during the optimization problem is one of its benefits. The active robotic arm is used as a case study in this article. The task is defined as choosing the best path based on the input target's position and direction and is used in X-ray robot systems. The outcomes demonstrate the viability of the suggested approach and can serve as a useful prototype for an intelligent X-ray robot.

Metrics

Metrics Loading ...

Article Details

Section
Articles

Plaudit

References

Zhu S, Wang. Time-Optimal and Jerk-Continuous Trajectory Planning Algorithm for Manipulators. Journal of Mechanical Engineering 2010; 46(3) :456–62. DOI: https://doi.org/10.3901/JME.2010.03.047

Al Mashhadany Y, Gaeid KS, Awsaj MK. Intelligent Controller for 7-DOF Manipulator Based upon Virtual Reality Model. 12th International Conference on Developments in eSystems Engineering (DeSE) 2019; Kazan, Russia. IEEE: p. 687-692. DOI: https://doi.org/10.1109/DeSE.2019.00128

Xu D, Liu M, Zhu L. Single Frequency GNSS Integer Ambiguity Resolution with Adaptive Genetic Algorithm. International Conference on Information Science and Technology 2013; Yangzhou, China. IEEE: p. 1049–1051. DOI: https://doi.org/10.1109/ICIST.2013.6747716

Al Mashhadany YI. Virtual Reality Trajectory of Modified PUMA 560 by Hybrid Intelligent Controller. Bulletin of Electrical Engineering and Informatics (2020); 9(6): 2261-2269. DOI: https://doi.org/10.11591/eei.v9i6.2579

Ying-Ying YU, Yan C, Tao-Ying LI. Improved Genetic Algorithm for Solving TSP. Control and Decision 2014; 29(8):1483–8.

Ren ZW, San Y. Improved Adaptive Genetic Algorithm and its Application Research in Parameter Identification. Journal of System Simulation 2006;18(1):41–43.

Yingjie L, Shanwen Z, Xuwu L et al. (2005). MATLAB Genetic Algorithm Toolbox and its Application. Xi’an Electronic and Science University press, Xi’an (In Chinese).

Ruggiero F, Lippiello V, Ollero A. Aerial Manipulation: A Literature Review. IEEE Robotics and Automation Letters 2018; 3(3): 1957-1964. DOI: https://doi.org/10.1109/LRA.2018.2808541

Sancak KV, Bayraktaroglu ZY. Nonlinear Computed Torque Control of 6-Dof Parallel Manipulators. International Journal of Control, Automation and Systems 2022; 20(7): 2297-2311. DOI: https://doi.org/10.1007/s12555-021-0198-6

Cheng C, Lv X, Zhang J, Zhang M. Robot Arm Path Planning Based on Improved RRT Algorithm. 3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT) 2021; Changzhou, China: p. 243-247. DOI: https://doi.org/10.1109/ISRIMT53730.2021.9596670

Zhang Z, Chen Z. Modeling and Control of Robotic Manipulators Based on Symbolic Regression. IEEE Transactions on Neural Networks and Learning Systems 2023; 34(5): 2440-2450. DOI: https://doi.org/10.1109/TNNLS.2021.3106648

Jun-lin M, Ying L, Ying-kun Z, Cunming H. Design of 3DOF Delta Parallel Capture Robot with High Speed and Light Weight. Journal of Physics: Conference Series 2022; 2188(1): 012008, (1-9). DOI: https://doi.org/10.1088/1742-6596/2188/1/012008

Shen N, Yuan H, Li J, Wang Z, Lu N, Lu Y. Dynamic Modeling and Simulation of a Hybrid Robot. Journal of Mechanisms and Robotics 2023; 15(1): 011012, (1-15). DOI: https://doi.org/10.1115/1.4054322

Xia Y, Yang M, Ji Z, Jia L, Zhou Z, Wu D. Design and Dimension Optimization of Cutter Disassembly Mechanism for Shield Tunneling Machine. Journal of Mechanical Science and Technology 2021; 35(7): 3005-3018. DOI: https://doi.org/10.1007/s12206-021-0624-y

Al Mashhadany YI. Scara robot: Modeled, simulated, and virtual-Reality Verified. In International Conference on Intelligent Robotics, Automation, and Manufacturing (pp. 94-102). Berlin, Heidelberg: Springer Berlin Heidelberg. 2012. DOI: https://doi.org/10.1007/978-3-642-35197-6_10

Yorozu T, Hirano M, Oka K, Tagawa Y. Electron Spectroscopy Studies on Magneto-Optical Media and Plastic Substrate Interface. IEEE Translation Journal on Magnetics in Japan 1987; 2(8): 740-741. DOI: https://doi.org/10.1109/TJMJ.1987.4549593

Al-Mashhadany YI. Design and Analysis of 7-DOF Human-Link Manipulator Based on Hybrid Intelligent Controller. Информатика и автоматизация 2022; 19(4): 774-802. DOI: https://doi.org/10.15622/sp.2020.19.4.3

Hosseininejad S, Dadkhah C. Mobile Robot Path Planning in Dynamic Environment Based on Cuckoo Optimization Algorithm. International Journal of Advanced Robotic Systems 2019; 16(2): 1729881419839575, (1-13).‏ DOI: https://doi.org/10.1177/1729881419839575

Kim YJ, Park SW, Yeom HG, Bang MS, Kim JS, Chung CK, Kim S. A Study on a Robot Arm Driven by Three-Dimensional Trajectories Predicted from Non-Invasive Neural Signals. Biomedical Engineering Online 2015; 14(1): 1-19.‏ DOI: https://doi.org/10.1186/s12938-015-0075-8

Suchi M, Bader M, Vincze M. Meta-Heuristic Search Strategies for Local Path-Planning to Find Collision Free Trajectories. Proceedings of the Austrian Robotics Workshop (ARW-15) 2015; Graz. Austria. Austrian Robotics Workshop (ARW): p. 1-8.‏

El Haiek D, Aboulissane B, El Bakkali L, El Bahaoui J. Optimal Trajectory Planning for Spherical Robot Using Evolutionary Algorithms. Procedia Manufacturing 2019; 32: 960-968.‏ DOI: https://doi.org/10.1016/j.promfg.2019.02.309

Patle BK, Pandey A, Parhi DRK, Jagadeesh AJDT. A review: On Path Planning Strategies for Navigation of Mobile Robot. Defence Technology 2019; 15(4): 582-606.‏ DOI: https://doi.org/10.1016/j.dt.2019.04.011

Muhammad A, Ali MA, Shanono IH. Path Planning Methods for Mobile Robots: A Systematic and Bibliometric Review. Elektronika 2020; 19(3): 14-34.

Seder M, Petrovic I. Dynamic Window-Based Approach to Mobile Robot Motion Control in the Presence of Moving Obstacles. Proceeding of the IEEE International Conference on Robotics and Automation 2007; Rome, Italy. IEEE: p. 1986-1991. DOI: https://doi.org/10.1109/ROBOT.2007.363613

Zafar MN, Mohanta JC. Methodology for Path Planning and Optimization of Mobile Robots: A Review. Procedia Computer Science 2018; 133: 141-152. DOI: https://doi.org/10.1016/j.procs.2018.07.018

Al-Mashhadany YI. A Posture of 6-DOF Manipulator by Locally Recurrent Neural Networks (LRNNs) Implement in Virtual Reality. IEEE Symposium on Industrial Electronics and Applications (ISIEA) 2010; Penang, Malaysia. IEEE: p. 573-578. DOI: https://doi.org/10.1109/ISIEA.2010.5679400

Qi RL, Zhou WJ, Wang TJ. A Genetic Algorithm-Based Trajectory Planning Method for Spatial Robotic Arm Obstacle Avoidance. Robotics 2014; 36: 263–270.

Shrivastava A, Dalla VK. Failure Control and Energy Optimization of Multi-Axes Space Manipulator Through Genetic Algorithm Approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2021; 43: 1-17.‏ DOI: https://doi.org/10.1007/s40430-021-03163-6

Fallah S, Yue B, Vahid-Araghi O, Khajepour A. Energy Management of Planetary Rovers Using a Fast Feature-Based Path Planning and Hardware-in-the-Loop Experiments. IEEE Transactions on Vehicular Technology 2013; 62(6): 2389-2401. DOI: https://doi.org/10.1109/TVT.2013.2244624

Chen Y, Chen S, Zhang T, Zhang S, Zheng N. Autonomous Vehicle Testing and Validation Platform: Integrated Simulation System with Hardware in the Loop. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 949-956). IEEE.‏ DOI: https://doi.org/10.1109/IVS.2018.8500461

Liu RJ, Wang F, Zhang Q, Nan L. Research on Trajectory Planning of ROS-based Robot Arm. Navig. Position. Timing 2016; 3: 82–88.

Kennedy J, Eberhart R. Particle Swarm Optimization. Proceedings of ICNN'95-International Conference on Neural Networks 1995; Perth, WA, Australia. IEEE: vol.4. p. 1942-1948.

Jie DY, Lu HR, Wu HL, Ni FL. Transporting Trajectory Optimization Method for Large Space Manipulator System. Acta Aeronautica et Astronautica Sinica 2018; 39: 111–119.

Liu Y, Jia QX, Chen G. Multi-Objective Particle Swarm Optimization Algorithm Based on Load-Maximizing Trajectory Optimization for Free-Floating Space Robots. Robotics; 2014; 36, 9.

Xia HW, Zhai YB, Ma GC, Deng Y. Spatial Robotic Arm Trajectory Planning Algorithm Based on Chaotic Particle Swarm Optimization Algorithm. Chinese Journal of Intelligent Science and Technology 2014; 6.

Xu W, Liu Y, Liang B, Xu Y, Qiang W. Autonomous Path Planning and Experiment Study of Free-Floating Space Robot for Target Capturing. Journal of Intelligent and Robotic Systems 2008; 51: 303-331.‏ DOI: https://doi.org/10.1007/s10846-007-9192-3

Liu Y, Du Z, Wu Z, Liu F, Li X. Multiobjective Preimpact Trajectory Planning of Space Manipulator for Self-Assembling a Heavy Payload. International Journal of Advanced Robotic Systems 2021; 18(1): 1729881421990285, (1-26). DOI: https://doi.org/10.1177/1729881421990285

Zhang J, Meng Q, Feng X, Shen H. A 6-DOF Robot-Time Optimal Trajectory Planning Based on an Improved Genetic Algorithm. Robotics and Biomimetics 2018; 5(1): 1-7.‏ DOI: https://doi.org/10.1186/s40638-018-0085-7

Losey DP, O'Malley MK. Learning the Correct Robot Trajectory in Real-Time from Physical Human Interactions. ACM Transactions on Human-Robot Interaction 2019; 9(1): 1-19‏.‏ DOI: https://doi.org/10.1145/3354139

Wang T, Xin Z, Miao H, Zhang H, Chen Z, Du Y. Optimal Trajectory Planning of Grinding Robot Based on Improved Whale Optimization Algorithm. Mathematical Problems in Engineering 2020; 2020:3424313, (1-8)‏.‏ DOI: https://doi.org/10.1155/2020/3424313

Li Z, Yang C, Burdet E. Guest Editorial an Overview of Biomedical Robotics and Bio-Mechatronics Systems and Applications. IEEE Transactions on Systems, Man, And Cybernetics: Systems 2016; 46(7): 869-874.‏ DOI: https://doi.org/10.1109/TSMC.2016.2571786

Gunantara N, Nurweda Putra I. The Characteristics of Metaheuristic Method in Selection of Path Pairs on Multicriteria Ad Hoc Networks. Journal of Computer Networks and Communications 2019; 2019:7983583, (1-6)‏.‏ DOI: https://doi.org/10.1155/2019/7983583

Reshamwala A, Vinchurkar DP. Robot Path Planning Using an Ant Colony Optimization Approach: A Survey. International Journal of Advanced Research in Artificial Intelligence 2013; 2(3): 65-71‏.‏ DOI: https://doi.org/10.14569/IJARAI.2013.020310

Korayem MH, Nazemizadeh M, Azimirad V. Optimal Trajectory Planning of Wheeled Mobile Manipulators in Cluttered Environments Using Potential Functions. Scientia Iranica 2011; 18(5): 1138-1147.‏ DOI: https://doi.org/10.1016/j.scient.2011.08.026

Llopis-Albert C, Rubio F, Valero F. Optimization Approaches for Robot Trajectory Planning. Multidisciplinary Journal for Education, Social and Technological Sciences 2018; 5(1): 1-16‏.‏ DOI: https://doi.org/10.4995/muse.2018.9867

Benotsmane R, Dudás L, Kovács G. Trajectory Optimization of Industrial Robot Arms Using a Newly Elaborated “Whip-Lashing” Method. Applied Sciences 2020; 10(23): 8666‏.‏ DOI: https://doi.org/10.3390/app10238666

Doan NCN, Lin W. Optimal Robot Placement with Consideration of Redundancy Problem for Wrist-Partitioned 6R Articulated Robots. Robotics and Computer-Integrated Manufacturing 2017; 48: 233-242.‏ DOI: https://doi.org/10.1016/j.rcim.2017.04.007

Chicco G, Mazza A. Metaheuristic Optimization of Power and Energy Systems: Underlying Principles and Main Issues of the ‘Rush to Heuristics’. Energies 2020; 13(19): 5097‏, (1-38).‏ DOI: https://doi.org/10.3390/en13195097

Kim J, Kim SR, Kim SJ, Kim DH. A Practical Approach for Minimum‐Time Trajectory Planning for Industrial Robots. Industrial Robot: An International Journal 2010; 37(1): 51-61. DOI: https://doi.org/10.1108/01439911011009957

Similar Articles

You may also start an advanced similarity search for this article.