Review of the Most Recent Articles in Fault Tolerant Control of Power Plants 2018 – 2022
Main Article Content
Abstract
This article covers the latest fault-tolerant control system (FTCS) developments and applications. FTCSs aim to maintain stability, minimize performance degradation, and compensate for system component faults. These systems benefit from and mission-critical applications where service continuity is crucial. This article describes several sensor and actuator errors. Fault Tolerant Control (FTC) includes active, passive, and hybrid approaches and the latest design techniques. Finally, FTCS stability and reliability analysis and research gaps were reviewed. This study provides current and future FTCS researchers with the latest trends and applications. This study's contribution. System component failures and instability are two major causes of control performance decline. Fault-tolerant control, or FTC, was developed in recent decades to improve control system resiliency. Active and passive FTC techniques exist. This paper examines control system faults, failure causes, and the latest resilience solutions. Fault detection and isolation (FDI) and active fault tolerance control (FTC) advances were examined. Encouraging FTC and FDI research, a comprehensive comparison of several aspects is performed to understand the pros and cons of various FTC techniques.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
Mondal J, Das DK. A New Online Testing Technique for Reversible Circuits. IET Quantum Communication 2022; 3(1): 50–59. DOI: https://doi.org/10.1049/qtc2.12035
Spatti DH, Liboni L, Flauzino RA, Bossolan RP, Vitti BC. Expert System for an Optimized Asset Management in Electric Power Transmission Systems. Journal of Control, Automation and Electrical Systems 2019; 30(3): 434–440. DOI: https://doi.org/10.1007/s40313-019-00451-4
Alsuwian T, Iqbal MS, Amin AA, Qadir MB, Almasabi S, Jalalah M. A Comparative Study of Design of Active Fault-Tolerant Control System for Air–Fuel Ratio Control of Internal Combustion Engine using Particle Swarm Optimization, Genetic Algorithm, and Nonlinear Regression-Based Observer Model. Applied Sciences 2022; 12(15): 7841. DOI: https://doi.org/10.3390/app12157841
Shahab MA, Mozafari B, Soleymani S, Dehkordi NM, Shourkaei HM, Guerrero JM. Distributed Consensus-Based Fault Tolerant Control of Islanded Microgrids. IEEE Transactions on Smart Grid 2020; 11(1): 37–47. DOI: https://doi.org/10.1109/TSG.2019.2916727
Handam A, Al-Smadi T. Multivariate Analysis of Efficiency of Energy Complexes Based on Renewable Energy Sources in the System Power Supply of Autonomous Consumer. International Journal of Advanced and Applied Sciences 2022; 9(5): 109–118. DOI: https://doi.org/10.21833/ijaas.2022.05.014
Amin AA, Hasan KM. A Review of Fault Tolerant Control Systems: Advancements and Applications. Measurement 2019; 143: 58–68. DOI: https://doi.org/10.1016/j.measurement.2019.04.083
Takialddin AS, Al-Agha OI, Alsmadi KA. Overview of Model Free Adaptive (MFA) Control Technology. IAES International Journal of Artificial Intelligence (IJ-AI) 2018; 7(4): 165-169. DOI: https://doi.org/10.11591/ijai.v7.i4.pp165-169
Riaz U, Amin AA, Tayyeb M. Design of Active Fault-Tolerant Control System for Air-Fuel Ratio Control of Internal Combustion Engines using Fuzzy Logic Controller. Science Progress 2022; 105(2): 003685042210947. DOI: https://doi.org/10.1177/00368504221094723
Alsuwian T, Amin AA. Maqsood MT, Qadir MB, Almasabi S, Jalalah M. Advanced Fault-Tolerant Anti-Surge Control System of Centrifugal Compressors for Sensor and Actuator Faults. Sensors 2022; 22: 3864. DOI: https://doi.org/10.3390/s22103864
Smadi TAA. Computer Application using Low Cost Smart Sensor. International Journal of Computer Aided Engineering and Technology 2012; 4(6): 567-579. DOI: https://doi.org/10.1504/IJCAET.2012.049572
Tabbache B, Rizoug N, Benbouzid MEH, Kheloui AA. Control Reconfiguration Strategy for Post-Sensor FTC in Induction Motor-Based EVs. IEEE Transactions on Vehicular Technology 2013; 62: 965–971. DOI: https://doi.org/10.1109/TVT.2012.2232325
Gaeid KS, Homod RZ, Mashhadany YA, Smadi TA, Ahmed MS, Abbas AE. Describing Function Approach with PID Controller to Reduce Nonlinear Action. International Journal of Electrical and Electronics Research 2022; 10(4), 976–983. DOI: https://doi.org/10.37391/ijeer.100437
Ortiz L, González JW, Gutierrez LB, Llanes-Santiago O. A Review on Control and Fault-Tolerant Control Systems of AC/DC Microgrids. Heliyon 2020; 6(8): e04799. DOI: https://doi.org/10.1016/j.heliyon.2020.e04799
Ortiz L, Orizondo R, Águila A, González JW, López GJ, Isaac I. Hybrid AC/DC Microgrid Test System Simulation: Grid-Connected Mode. Heliyon 2019; 5(12): e02862. DOI: https://doi.org/10.1016/j.heliyon.2019.e02862
Afshari A, Karrari M, Baghaee HR, Gharehpetian GB, Karrari S. Cooperative Fault-Tolerant Control of Microgrids under Switching Communication Topology. IEEE Transactions on Smart Grid 2019; 11: 1866–1879. DOI: https://doi.org/10.1109/TSG.2019.2944768
Al-Husban Y, Al-Ghriybah M, Handam A, Al-Smadi T, Al-Awadi R. Residential Solar Energy Storage System: State of the Art, Recent Applications, Trends, and Development. Journal of Southwest Jiaotong University 2022; 57(5): 750–769. DOI: https://doi.org/10.35741/issn.0258-2724.57.5.61
Suwatthikul J. Fault Detection and Diagnosis for in-Vehicle Networks. Fault Detection 2010; 283-306. DOI: https://doi.org/10.5772/9069
Al-Smadi TA, Ibrahim YK. Design of Speed Independent Ripple Carry Adder. Journal of Applied Sciences 2007; 7(6), 848–854. DOI: https://doi.org/10.3923/jas.2007.848.854
Isermann R. (2006). Fault-Tolerant Components and Control. Fault-Diagnosis Systems, 355–365. DOI: https://doi.org/10.1007/3-540-30368-5_19
Ding SX. Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer Science & Business Media, 2008.
Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K. A Review of Process Fault Detection and Diagnosis: Part III: Process History Based Methods. Computers and Chemical Engineering 2003; 27(3):327–346. DOI: https://doi.org/10.1016/S0098-1354(02)00162-X
Zhong M, Xue T, Ding SX. A Survey on Model-Based Fault Diagnosis for Linear Discrete Time-Varying Systems. Neurocomputing 2018; 306: 51–60. DOI: https://doi.org/10.1016/j.neucom.2018.04.037
Manandhar K, Cao X, Hu F, Liu Y. Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid using Kalman Filter. IEEE Transactions on Control of Network Systems 2014; 1(4): 370–379. DOI: https://doi.org/10.1109/TCNS.2014.2357531
Rahimi A, Kumar KD, Alighanbari H. Enhanced Adaptive Unscented Kalman Filter for Reaction Wheels. IEEE Transactions on Aerospace and Electronic Systems 2015; 51(2):1568–1575. DOI: https://doi.org/10.1109/TAES.2014.130766
Zhong M, Liu S, Zhao H. Krein Space-Based H∞ Fault Estimation for Linear Discrete Time-Varying Systems. Acta Automatica Sinica 2008; 34(12):1529–1533. DOI: https://doi.org/10.1016/S1874-1029(08)60176-7
Zhang C, Zhao H, Li T. Krein Space-Based H∞ Adaptive Smoother Design for a Class of Lipschitz Nonlinear Discrete-Time Systems. Applied Mathematics and Computation 2016; 287:134–148. DOI: https://doi.org/10.1016/j.amc.2016.04.022
Zhang K, Jiang B, Yan XG, Mao Z. Sliding Mode Observer Based Incipient Sensor Fault Detection with Application to High-Speed Railway Traction Device. ISA Transactions 2016; 63:49–59. DOI: https://doi.org/10.1016/j.isatra.2016.04.004
Castillo I, Edgar TF, Fern´andez BR. Robust Model-Based Fault Detection and Isolation for Nonlinear Processes using Sliding Modes. International Journal of Robust and Nonlinear Control 2012; 22(1):89–104. DOI: https://doi.org/10.1002/rnc.1807
Abbaspour A, Mokhtari S, Sargolzaei A, Yen KK. A Survey on Active Fault-Tolerant Control Systems. Electronics 2020, 9(9), 1513. DOI: https://doi.org/10.3390/electronics9091513
Talebi HA, Khorasani K, Tafazoli S. A Recurrent Neural-Networkbased Sensor and Actuator Fault Detection and Isolation for Nonlinear Systems with Application to the Satellite’s Attitude Control Subsystem. IEEE Transactions on Neural Networks 2009; 20(1):45–60. DOI: https://doi.org/10.1109/TNN.2008.2004373
Blanke M, Kinnaert M, Lunze J, Staroswiecki M, Schröder J. Diagnosis and Fault-Tolerant Control. Diagnosis and Fault-Tolerant Control 2006; 2: 1-32. DOI: https://doi.org/10.1007/978-3-662-05344-7_1
Zhang Y, Jiang J, Bibliographical Review on Reconfigurable Fault-Tolerant Control Systems. Annual Reviews in Control 2008; 32(2) :229–252. DOI: https://doi.org/10.1016/j.arcontrol.2008.03.008
Shamma JS. Analysis and design of gain scheduled control systems, Ph.D. thesis, Massachussets Institute of Technology, Department of Mechanical Engineering, 1988.
Shamma JS. An overview of LPV systems, in: J. Mohammadpour, C. Scherer (Eds.), Control of linear parameter varying systems with applications, Springer, 2012, pp. 3–26. DOI: https://doi.org/10.1007/978-1-4614-1833-7_1
Hallouzi R, Verdult V, Babuska R, Verhaegen M. Fault Detection and Identification of Actuator Faults using Linear Parameter Varying Models. IFAC Proceedings Volumes 2005; 38(1): 119-124. DOI: https://doi.org/10.3182/20050703-6-CZ-1902.01822
Al-Smadi TA. Low Cost Smart Sensor Design. American Journal of Engineering and Applied Sciences 2011; 4(1): 162–168. DOI: https://doi.org/10.3844/ajeassp.2011.162.168
De-Oca S, Puig V, Witczak M, Dziekan L. Fault-Tolerant Control Strategy for Actuator Faults using LPV Techniques: Application to A Two Degree Of Freedom Helicopter. International Journal of Applied Mathematics and Computer Science 2012; 22(1) :161–171. DOI: https://doi.org/10.2478/v10006-012-0012-y
Getting Wind and Sun onto the Grid. International Energy Agency. Archived (PDF) from the original on 16 December 2018. Retrieved 9 May 2019.
Rangegowda, Pavanraj & Patwardhan, Sachin & Mukhopadhyay, Siddhartha. Fault Tolerant Control of a Nuclear Steam Generator in the Presence of Sensor Biases. 6th International Conference on Advances in Control and Optimization of Dynamical Systems February 16-19, 2020, IIT Madras, Chennai, India.
Buzhinsky I, Pakonnen A. Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions. 2019; 7: 162139-162156. DOI: https://doi.org/10.1109/ACCESS.2019.2951938
Gao S,Hou HJ. Solar Thermal Power System Analysis. Water Conservancy and Electric Power Machinery 2009; 31(01):70-74.
Xin PY. Comprehensive Evaluation and Application Prospect of Solar Power Generation Technology, 5-21. Beijing: North China Electric Power University 2015.
Praveen RP, Abdul-Baseer M, Awan AB, Zubair M. Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region. Energies 2018; 11(4): 741. DOI: https://doi.org/10.3390/en11040741
Ellabban O, Abu-Rub H, Blaabjerg F. Renewable Energy Resources: Current Status, Future Prospects and their Enabling Technology. Renewable and Sustainable Energy Reviews 2014; 39: 748-764. DOI: https://doi.org/10.1016/j.rser.2014.07.113
Hydropower Special Market Report – Analysis. IEA. Retrieved 2022-01-30.
IEA (2022), Renewables 2022, IEA, Paris https://www.iea.org/reports/renewables-2022, License: CC BY 4.0.
Habibi H, Howard I, Simani S. Reliability Improvement of Wind Turbine Power Generation using Model-Based Fault Detection and Fault Tolerant Control: A Review. Renewable Energy 2019; 135: 877-896. DOI: https://doi.org/10.1016/j.renene.2018.12.066
Gaeid K, Zapar WM, Maher RA, Salih AL, Qasim MA. Digitally Controlled Bridgeless Totem-Pole Power Factor Corrector. Tikrit Journal of Engineering Sciences 2022; 29(3): 91–101. DOI: https://doi.org/10.25130/tjes.29.3.10
Anderson, B., & Baring-Gould, E. (2022). Demonstration of a Fault Impact Reduction Control Module for Wind Turbines. Wind Energy Science 2022; 7(4): 1753-1769. DOI: https://doi.org/10.5194/wes-7-1753-2022
Hoseinzadeh S, Garcia DA. Numerical Analysis of Thermal, Fluid, and Electrical Performance of a Photovoltaic Thermal Collector at New Micro-Channels Geometry. Journal of Energy Resources Technology 2022; 144: 062105.
Wali SA, Muhammed AA. Power Sharing and Frequency Control in Inverter-based Microgrids. Tikrit Journal of Engineering Sciences 2022; 29(3): 70–81. DOI: https://doi.org/10.25130/tjes.29.3.8
IEA (2021) Renewables 2021, IEA, Paris. Available from: https://www.iea.org/rep
orts/renewables-2021.
Babqi AJ, Althobaiti A, Alkhammash HI, Ibeas A. Current Model Predictive Fault-Tolerant Control for Grid-Connected Photovoltaic System. AIMS Energy 2022; 10(2): 273-291. DOI: https://doi.org/10.3934/energy.2022015
Hoseinzadeh S, Garcia DA. Numerical Analysis of Thermal, Fluid, and Electrical Performance of a Photovoltaic Thermal Collector at New Micro-Channels Geometry. Journal of Energy Resources Technology 2022; 144(6): 062105. DOI: https://doi.org/10.1115/1.4052672
Hoseinzadeh S, Sohani A, Samiezadeh S, Kariman H, Ghasemi MH. using Computational Fluid Dynamics for Different Alternatives Water Flow Path in a Thermal Photovoltaic (PVT) System. International Journal of Numerical Methods for Heat & Fluid Flow. 2021; 31: 1618–1637. DOI: https://doi.org/10.1108/HFF-02-2020-0085
Sohani A, Dehnavi A, Sayyaadi H, Hoseinzadeh S, Goodarzi E, Garcia DA, Groppi D. The Real-Time Dynamic Multi-Objective Optimization of a Building Integrated Photovoltaic Thermal (BIPV/T) System Enhanced by Phase Change Materials. Journal of Energy Storage 2022; 46, 103777. DOI: https://doi.org/10.1016/j.est.2021.103777
Khodayar-Sahebi H, Hoseinzadeh S, Ghadamian H, Ghasemi MH, Esmaeilion F, Garcia DA. Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System. Sustainability 2021; 13(20): 11493. DOI: https://doi.org/10.3390/su132011493
Zeb K, Nazir MS, Ahmad I, Uddin W, Kim HJ. Control of Transformerless Inverter-Based Two-Stage Gridconnected Photovoltaic System using Adaptive-PI and Adaptive Sliding Mode Controllers. Energies 2021; 14(9):2546. DOI: https://doi.org/10.3390/en14092546
Janardhan G, Surendra-Babu NNV, Srinivas GN. Single Phase Transformerless Inverter for Grid Connected Photovoltaic System with Reduced Leakage Current. Electrical Engineering and Electromechanics 2022; (5):36-40. DOI: https://doi.org/10.20998/2074-272X.2022.5.06
Albalawi H, Zaid S. An H5 Transformerless Inverter for Grid Connected PV Systems with Improved Utilization Factor and a Simple Maximum Power Point Algorithm. Energies 2018; 11(11): 2912. DOI: https://doi.org/10.3390/en11112912
Hassaine L, Bengourina MR. Design and Digital Implementation of Power Control Strategy for Grid Connected Photovoltaic Inverter. International Journal of Power Electronics and Drive Systems 2019; 10(3):1564-1574. DOI: https://doi.org/10.11591/ijpeds.v10.i3.pp1564-1574
Khan MNH, Forouzesh M, Siwakoti YP, Li L, Kerekes T, Blaabjerg F. Transformerless Inverter Topologies for Single-Phase Photovoltaic Systems: A Comparative Review. IEEE Journal of Emerging and Selected Topics in Power Electronics 2020; 8(1) 805-835. DOI: https://doi.org/10.1109/JESTPE.2019.2908672