Effect of Heat Treatment on the Mechanical Properties of Stainless Steel 304
Main Article Content
Abstract
Stainless steel is widely used in the engineering industry for its suitable engineering properties such as corrosion resistance, high flexibility, hardness and durability to static and dynamic loads. It is very suitable for home uses, automotive parts and many engineering applications. In this study, a sample of 304 stainless steel was selected, where a heat treatment (Normalizing) was performed. This process was performed at (1050, 1100 and 1150) °C respectively and according to (ASTM 304 S30400). And Tempering at 350 °C to remove the internal stresses and prevent the deposition of carbides, which occurs at the degree of (450-800) °C for stainless steel. Mechanical tests were conducted, the tensile and Brinell hardness tests. In addition to the test of the fatigue, wear and Izod impact tests. X-ray diffraction (XRD) analysis was used to distinguish the phase (s) that formed The results showed in general that the heat treatments lead to the improvement of mechanical properties except the impact test, the best cases has been at 1100 °C temperature.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
Callister WD, Rethwisch DG. Fundamentals of materials science and engineering. London, UK: John Wiley & Sons, Inc.; 2000.
Callister WD, Rethwisch DG. Materials science and engineering: an introduction: Wiley New York; 1991.
Bolton W. Engineering materials technology. 3rd ed. London, U.K.: Butter Worth- Heinemann; 2013.
Padiha, AF, Plaut RL, Rios PR. ISIJ Main thermal treatments and transformations that accurin austenitic stainless steel between room tempture and the liquid state. International Japan 2003; 43-143. DOI: https://doi.org/10.2355/isijinternational.43.135
Harris J. Engineering metallurgy: Part 1 applied physical metallurgy. 6th ed. USA: Taylor & Francis; 1994. DOI: https://doi.org/10.1179/imr.1994.39.5.213
Davis J. ASM specialty handbook: Stainless steels (ASM International, materials park, OH, 1994). Google Scholar: 10.
Askeland DR, Phulé PP. The science and engineering of materials. 6th ed. USA: University of Missouri—Rolla, Emeritus 2003.
Bhadeshia H, Honeycombe R. Steels: microstructure and properties. London: Edward Arnold: Butterworth-Heinemann; 1995.
Van Vlack LH. Elements of materials science and engineering. 5th ed. USA: Wesley Publishing Company, Inc. 1989.
Smallman RE, Bishop RJ. Modern physical metallurgy and materials engineering: Elsevier; 1999. DOI: https://doi.org/10.1016/B978-075064564-5/50013-6
Totten GE. Steel heat treatment: metallurgy and technologies. PhD.: Portland State University; Oregon, USA: 2006. DOI: https://doi.org/10.1201/NOF0849384523
Oh K-T, Hwang C-J, Kim K-N. Effects of heat treatment conditions on the mechanical
properties of orthodontic stainless steel wires. Materials Transactions 2002; 43 (12): 3072-3077. DOI: https://doi.org/10.2320/matertrans.43.3072
Rao MH, Rao GN. Effect of Heat Treatment Cycle on the Mechanical Properties of Machinable Austempered Ductile Iron. 2007.
] بشير واخرون. تأثير المعاملات الحرارية على مقاومة تأكل
صلب متوسط الكربون في مياه عين كبريت. مجلة تكريت العلوم و
الهندسية 2012، 19 (3): 14-25. DOI: https://doi.org/10.35671/telematika.v14i1.1217
[ 15 ] نيفين الونداوي. تأثير المعاملة الحرارية الجزئية على الخواص
الميكانيكية لصلب العدة عالي الكربون المستخدم في صناعة
الأجزاء الفعالة لقوالب القطع على البارد. مجلة الهندسة .و199
والتكنلوجيا 2009، 27(5):
[ 16 ]امین دواي. تأثير المعاملات الحرارية على الخواص الميكانيكية
والكلال. مجلة الهندسة والتكنلوجيا 2007، 25 (8)
Dieter GE. Mechanical metallurgy. 2nd Ed., MGraw-Hill Kogakusha, 1981.