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Total Head Evaluation using Exact 
and Finite Element Solutions of 
Laplace Equation for Seepage of 
Water under Sheet Pile 

 
A B S T R A C T  
 

In this study, the strong and weak forms of Darcy flow equation has been derived. 

The final obtained equation is Laplace partial differential equation. For total head 

evaluation, Laplace equation is solved using exact solution depending on Fourier 

series and numerical solution depending on finite element method. A computer 

program has been developed in MATLAB program to solve the Laplace equation 

using both exact and finite element solutions and the seepage of water under sheet 

pile is taken as a case study. Different number of points and nodes has been 

selected for the two methods. It is shown that both exact and finite element 

solutions have a good match in distribution for the study area especially when the 

Fourier points are increased. 
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    اه تحت الركيزة اللوحيةتقييم الجهد الكلي باستخدام الحل الجبري الدقيق والعناصر المحددة لمعادلة لابلاس لتسرب المي

 الخلاصة

المعادلة التفاضلية الجزئية  ة تمثلتمت في هذه الدراسة اشتقاق الصيغ الاساسية المعروفة بالصيغ القوية والضعيفة لمعادلة دارسي الخاصة بالجريان. حيث ان الصيغة النهائي

باستخدام الطريقة العددية باستخدام الطريقة الرياضية الجبرية بالاعتماد على متسلسلة فورير و تم حل معادلة لابلاس الكلي،المعروفة بمعادلة لابلاس. لغرض حساب الجهد 

لى حالة تسرب المياه تحت حلول عبالاعتماد على طريقة العناصر المحددة. تم كتابة برنامج متكامل في الماتلاب لغرض حل معادلة لابلاس باستخدام الطريقتين وتم تطبيق ال

عناصر المحددة. وقد بينت حية. تم دراسة تاثير عدد مختلف من نقاط فورير على الحل الجبري وكذلك تاثير عدد النقاط او العقد على الحل العددي في طريقة الالركائز اللو

دد نقاط فورير الخاصة عبالخصوص عند زيادة الدراسة ان كل من الحل الجبري والحل العددي المتمثل في طريقة العناصر المحددة متقاربة في التوزيع على منطقة الدراسة و

 بالحل الجبري.

1. INTRODUCTION 

Sheet pile is one of the retaining structures that is 

mainly affected by the seepage of water underneath its 

base. The seepage of the water may alter the value and the 

distribution of the passive pressure where failure could 

happen at the base of the sheet pile due to the extreme 

difference in hydraulic head between the up and 

downstream [1].     

When an excavating is complete in a huge area, the 

soil failure due to seepage in the front of the sheet pile is a 

problem in two dimensions where such problem was first 

addressed by Terzaghi [2].   

                                                           
* Corresponding author: E-mail : engaram@yahoo.com  

A simple relation was proposed by Henry Darcy in 

(1856) using a laboratory experiment that is known by 

Darcy’s law. Henry Darcy was the first to work in 

evaluating the amount of seepage in a homogenous soil and 

finally the Laplace partial differential equation of flow is 

obtained [3]. The Laplace flow equation was solved using 

exact solution depending on the method of separation of 

variables. Later on and after a half of century of 

advancement, finite element method (FEM) has used as a 

very powerful method for numerical computations in both 

engineering and science. 

In the FEM, isoparametric elements are mapped 

elements that play a very important role in such numerical 

evaluation [4]. In numerical simulation, the determinant of  
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Nomenclature 

g acceleration 

h the head of water 

k permeability coefficient 

n no. of points in the Fourier series 

𝑛 unit normal vector 

p pressure 

po prescribed values of pressure on the 

boundary 

v velocity 

𝑣𝑜 prescribed values of velocity 

Greek symbols 

𝜇 dynamic viscosity  

𝜌 density   

𝛤𝑁         Neumann boundary condition 

𝛤𝐷 Dirichilet boundary condition 

[𝐾] ∫ (BTΘI)
T

Ω

(BTΘI) 𝑑Ω 

[𝑈] vec [hT] 

[𝐹] − ∫ (NΘI)
𝑇

vec [BT]
𝑇

vec [FT] dΩ
Ω

 

the Jacobian matrix has to be checked continuously for its 

positivity in order to prevent distorted elements. Moreover, 

using Galerkin weak form for the numerical integration, 

Gauss quadrature is a frequently applied technique. 

Quadrature rule is necessary for problems with high-order 

approximated function that noticeably increase the 

computational cost in addition to the complexity in 

implementation [5]. Furthermore, the presence of modern 

computer program such as MATLAB is considered as a 

useful implement to solve well-defined problems 

encountered in geotechnical practice. Using MATLAB is 

beneficial in terms in dealing with such problems to obtain 

precious results speedily and accordingly to perform 

parametric investigations rapidly to be useful in the design 

perspective [6]. Hence, this study has focused in deriving 

all the necessary equations for total head evaluation with 

performing a comparative study on sheet pile using both 

exact and finite element methods.                       

The overall objective of this study was to evaluate the 

total head using both exact and finite element solutions of 

Laplace partial differential equation in the case of seepage 

of water under sheet pile. The specific objectives were as 

follows: 

1- Develop a computer program in MATLAB to apply 

both exact and finite element solutions. 

2- Investigate the contours of total head distribution over 

the studied area for both exact and finite element 

solutions.  

3- Study the absolute error of the total head at every single 

node.  

 

2. MATHEMATICAL BACKGROUND AND 
METHODS 
 

2.1. Darcy Law 

Darcy law can be given as below: 

𝑣 =  −
𝑘

𝜇
 (grad[𝑝] + 𝜌𝑔)                                                  (1) 

For incompressible fluid: 

div [ v ] = 0 , then 

div [ 𝑣 ] = div [−
𝑘

𝜇
 (grad[𝑝] + 𝜌𝑔) ] = 0                  (2) 

2.2.  [S] or Strong Form 

Use Eq. (2) to derive [S] problem: 

−div[
𝑘

𝜇
 grad(𝑝)] =  −div [ 𝜌▁𝑔  ]                                  (3) 

v . n =  vo(x)    on ΓN       

p(x) =  po(x)    on ΓD                     

ΓN ∪ ΓD =  ∂Ω 

ΓN ∩ ΓD =  ∅ 
where 

n  unit normal vector. 
vo prescribed values of velocity. 
po prescribed values of pressure on the boundary. 
ΓN Neumann boundary condition. 
ΓD Dirichilet boundary condition. 

2.3.  [V] or Weak form 

Multiply both sides by w (test function) then integrate over 

the area (using Galerkin’s formalism): 

∫ 𝑤. div [
𝑘

𝜇
grad(𝑝)] 𝑑𝛺 = ∫ 𝑤. div [𝜌𝑔] 𝑑𝛺,

𝛺𝛺

∀𝑤   (4) 

Apply Green identity to the left side: 

 

∫ div [𝑤
𝑘

𝜇
grad(𝑝)] 𝑑𝛺 − ∫ grad[𝑤]. grad[𝑝]𝑑𝛺

𝛺

= ∫ 𝑤. div [𝜌𝑔] 𝑑𝛺                                                                          (5)
𝛺

 
Ω

 

Apply divergence theorem to the first term in the left side: 

∫ 𝑤
𝑘

𝜇
grad(𝑝). 𝑛𝑑𝛤 − ∫ grad[𝑤].

𝑘

𝜇
𝑔rad[𝑝]𝑑𝛺

𝛺

= ∫ 𝑤. div [𝜌𝑔] 𝑑𝛺
𝛺𝜕𝛺

                                                                            (6) 

Then, 

∫ grad[𝑤].
𝑘

𝜇
grad(𝑝). 𝑑𝛺 = ∫ 𝑤

𝑘

𝜇
grad[𝑝]. 𝑛𝑑𝛤 −

𝜕𝛺

∫ 𝑤. div [𝜌𝑔] 𝑑𝛺
𝛺

, ∀𝑤
𝛺

                                                                  (7) 

The first term in the right hand side can be simplified by assuming 2D problem and also take in consider: 
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grad[𝑝] = 𝛾𝑤grad[ℎ] = 𝛾𝑤 [
𝜕ℎ

𝜕𝑥
  

𝜕ℎ

𝜕𝑦
] = 𝛾𝑤[0  0] = 0                                                                                                                  (8) 

Then, Eq. (8) becomes: 

∫ grad[𝑤].
𝑘

𝜇
grad(𝑝). 𝑑𝛺 = − ∫ 𝑤. div [𝜌𝑔] 𝑑𝛺

𝛺

, ∀𝑤
Ω

                                                                                                          (9) 

Eq. (9) can be written as follows: 

∫ grad[𝑤].
𝑘𝛾𝑤

𝜇
grad(ℎ). 𝑑𝛺 = − ∫ 𝑤. div[𝐹]𝑑𝛺

𝛺

, ∀𝑤 
𝛺

                                                                                                        (10) 

where h is the head of water. When the fluid is water, then: 
kγw

μ
= 1.0. Hence, Eq. (10) can be written: 

∫ grad[𝑤]. grad(ℎ). 𝑑𝛺 = − ∫ 𝑤. div[𝐹]𝑑𝛺
𝛺

, ∀𝑤 
𝛺

                                                                                                               (11) 

Eq. (11) is used in finite element formulation: 

LHS = ∫ grad[𝑤]. grad(ℎ). 𝑑𝛺 = ∫ (𝐵𝑇𝛩𝐼)
𝛺

𝑣𝑒𝑐 [𝑤𝑇] . (𝐵𝑇𝛩𝐼) vec [ℎ𝑇] 𝑑𝛺

= vec [𝑤𝑇]
𝑇

∫ (𝐵𝑇𝛩𝐼)
𝑇

(𝐵𝑇𝛩𝐼)  𝑣𝑒𝑐 [ℎ𝑇] 𝑑𝛺                                                                                        (12)
𝛺

 

RHS = − ∫ 𝑤. div[𝐹]𝑑𝛺 = − ∫ (𝑁𝛩𝐼) vec [𝑤𝑇] . vec [𝐵𝑇]
𝑇

vec [𝐹𝑇] 𝑑𝛺 

𝛺𝛺

 

= −vec [𝑤𝑇]
𝑇

∫ (𝑁𝛩𝐼)
𝑇

vec [𝐵𝑇]
𝑇

𝛺

vec [𝐹𝑇] 𝑑𝛺                                                                       (13) 

From Eqs. (11) and (12): 

vec [wT]
T

will be dropped from both sides. Then, the full 

equation can be written: 

[𝐾] [𝑈] = [𝐹]                                                                     (14) 

where 

[𝐾] = ∫ (𝐵𝑇𝛩𝐼)
𝑇

𝛺

(𝐵𝑇𝛩𝐼) 𝑑𝛺                             (Known) 

[𝑈] = vec [ℎ𝑇]                                                      (Unknown) 

[𝐹] = − ∫ (𝑁𝛩𝐼)
𝑇

vec [𝐵𝑇]
𝑇

𝑣𝑒𝑐 [𝐹𝑇] 𝑑𝛺
𝛺

      (Known) 

2.4. Exact Solution of Laplace Equation 

For the steady state flow in 2D homogenous, Laplace 

equation can be written as follows: 

𝛻2ℎ =
𝜕2ℎ

𝜕2𝑥
+

𝜕2ℎ

𝜕2𝑥
= 0                                                       (15) 

The idealization of the steady state with given 

boundary conditions are shown in Fig. 1. 

For the exact solution of the Laplace equation, 

separation of variables can be used: 

ℎ(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦)                                                           (16) 

1

𝐹
.
𝑑2𝐹

𝑑𝑥2
= −

1

𝐺
.
𝑑2𝐺

𝑑𝑦2
= −𝑘                                                (17) 

Then, 

𝑑2𝐹

𝑑𝑥2
+ 𝑘𝐹 = 0                                                                      (18) 

 

Fig.  1. Steady state dealization of 2D-homogenous 

Laplace quation. 

From the left and right boundary conditions: 

𝐹(0) = 0, 𝐹(𝑎) = 0 ⟹ 𝑘 = (
𝑛 × 𝜋

𝑎
)

2

                         (19) 

𝐹(𝑥) = 𝐹𝑛(𝑥) = sin (
𝑛𝜋

𝑎
𝑥)                                             (20) 

𝐺(𝑦) = 𝐺𝑛(𝑦) = 𝐴𝑛𝑒(𝑛𝜋𝑦 𝑎⁄ ) + 𝐵𝑛𝑒(−𝑛𝜋𝑦 𝑎⁄ )                (21) 

By applying both bottom and top boundary conditions: 

ℎ(𝑥, 𝑦) = ∑ 𝐴𝑛
∗ sin (

𝑛𝜋𝑥

𝑎
) sinh (

𝑛𝜋𝑦

𝑎
)

∞

𝑛=1

                       (22) 

𝐴𝑛
∗ =

2

𝑎 sinh(𝑛𝜋𝑏 𝑎⁄ )
∫ 𝑓(𝑥) sin (

𝑛𝜋𝑥

𝑎
)

𝑎

0

𝑑𝑥                (23) 

where n is number of points in the Fourier series. 
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3. RESULTS AND ANALYSIS 

The description of the studied case can be shown in 

Fig. 2. The problem represents the seepage of water under 

sheet pile from upstream level to downstream level. Both 

exact and numerical solutions have been investigated using 

different Fourier points and number of nodes. The element 

numbering has started form the upper left side of the mesh 

where the node numbers are given in clock wise order. 

Several trials have been investigated for the case 

study as shown in Table 1. All the studied trials have the 

same dimensions with width (a) and height (b) of 10 m. In 

addition, the upstream and downstream heads for all the 

trails are 5 m, and 1 m respectively. The variation of the 

head contours for both FEM and analytical solutions for the 

first trial (one point Fourier, nine nodes in X and Y 

directions) have shown in Fig. 3. In the FEM, the contours 

of the head distribution are concentrated on the upper left 

side where the high head in the upstream is located. 

However, in the exact solution; the contours of the head 

distribution are concentrated on the upper middle side in 

symmetrical shape. 

 

Fig. 2. General description of the case study. 

Table 1 

Details of the case study. 

Trial 

no. 

N 

(Fourier 

points) 

a 

(m) 

b 

(m) 

V1  

(m) 

V2  

(m) 

XSeed 

(no. 

nodes) 

YSeed 

(no. 

nodes) 

1 1 10 10 5 1 9 9 

2 1 10 10 5 1 11 11 

3 1 10 10 5 1 15 15 

4 1 10 10 5 1 21 21 

5 1 10 10 5 1 31 31 

6 1 10 10 5 1 41 41 

7 1 10 10 5 1 99 99 

8 5 10 10 5 1 77 77 

9 5 10 10 5 1 99 99 

10 5 10 10 5 1 101 101 

Similarly, the variation of the head contours for both 

FEM and analytical solutions for the second trial (one point 

Fourier, 11 nodes in X and Y directions) have shown in 

Fig. 4. In the FEM, the contours of the head distribution are 

a little smoother compared to FEM in the first trail that has 

lower number of nodes. Likewise, the variation of the head 

contours for both FEM and analytical solutions for the third 

trial (one point Fourier, 15 nodes in X and Y directions) 

have shown in Fig. 5. In the FEM, the contours of the head 

distribution are started to be smoother compared to FEM in 

the previous trails that have lower number of nodes. In 

addition, the variation of the head contours for both FEM 

and analytical solutions for the fourth trial (one point 

Fourier, 21 nodes in X and Y directions) have shown in 

Fig. 6. Smoother head contours distributions are observed 

for FEM compared to the previous trials. 

 

(a) 

 

(b) 

Fig. 3. Contours of head for trial 1, (a) Exact soultion, and 

(b) FEM. 

 

(a) 

 

(b) 

Fig. 4. Contours of head for trial 2, (a) Exact solution, and 

(b) FEM. 

The variation of the head contours for both FEM and 

analytical solutions for the fifth, sixth, and seventh trials 

(one point Fourier; 31, 41, and 99 nodes in X and Y 

directions) have shown in Figs. 7- 9. As the numbers of 

nodes are increased in FEM, smoother head contours 

distributions are noticed. 

The variation of the head contours for both FEM and 

analytical solutions for the eighth trial (five points Fourier; 
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77 nodes in X and Y directions) have shown in Fig. 10. In 

the FEM, the contours of the head distribution are 

concentrated on the upper left side where the high head in 

the upstream is located. In the exact solution, as the Fourier 

Points increased from 1 to 5; the contours of the head 

distribution are moved towards the region of high head in 

the upstream zone on the upper left side. The variation of 

the head contours for both FEM and analytical solutions 

for the ninth trial (five points Fourier; 99 nodes in X and Y 

directions) have shown in Fig. 11. As the numbers of nodes 

are increased in FEM, smoother head contours 

distributions are noticed. The variation of the head 

contours for both FEM and analytical solutions for the 

tenth trial (five points Fourier; 101 nodes in X and Y 

directions) have shown in Fig. 12. As the numbers of nodes 

are increased in FEM, smoother head contours 

distributions are noticed. 

 

(a) 

 
(b) 

Fig. 5. Contours of head for trial 3, (a) Exact solution, and 

(b) FEM. 

 

(a) 

 
(b) 

Fig. 6. Contours of head for trial 4, (b) Exact solution, 

and (b) FEM. 

 

(a) 

 
(b) 

Fig. 7. Contours of head for trial 5, (a) Exact solution, and 

(b) FEM. 

 

(a) 

 
(b) 

Fig. 8. Contours of head for trial 6, (a) Exact solution, and 

(b) FEM. 

The variation of the total head with node number for 

both exact and FEM solutions using five nodes as total 

number of nodes in x and y directions is shown in Fig. 13. 

The FEM solution is very close to the exact solution in all 

the nodes with the 100% value prediction in the locations 

that has zero total head. 

The variation of the absolute error of total head 

prediction with node number for both exact and FEM 

solutions using five nodes as total number of nodes in x and 

y directions is shown in Fig. 14. In most of the nodes, the 

FEM solution is very close to the exact solution with 

almost zero absolute error. However, in several nodes; 

there is a quite high absolute error prediction with the 

maximum value of 61% at node 22 (upper right side of the 

mesh). 
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(a) 

 
(b) 

Fig. 9. Contours of head for trial 7, (a) Exact solution, and 

(b) FEM. 

 

(a) 

 
(b) 

Fig. 10. Contours of head for trial 8, (a) Exact solution, 

and (b) FEM. 

The variation of the total head with node number for 

both exact and FEM solutions using nine nodes as total 

number of nodes in x and y directions is shown in Fig. 15. 

With increasing the number of nodes, the FEM solution is 

very close to the exact solution in most of the nodes with 

the 100% value prediction in the locations that has zero 

total head. 

The variation of the absolute error of total head 

prediction with node number for both exact and FEM 

solutions using nine nodes as total number of nodes in x 

and y directions is shown in Fig. 16. In most of the nodes, 

the FEM solution is very close to the exact solution with 

almost zero absolute error. Nevertheless, in several nodes; 

there is a quite high absolute error prediction with the 

maximum value of 61% at node 75 (upper right zone of the 

downstream). 

 

(a) 

 
(b) 

Fig. 11. Contours of head for trial 9, (a) Exact solution, 

and (b) FEM. 

 

(a) 

 
(b) 

Fig. 12. Contours of head for trial 10, (a) Exact solution, 

and (b) FEM. 

 
Fig. 13. Variation of total head with node number for both 

exact and FEM solutions (number of nodes in X and Y 

directions = 5). 

The variation of the total head with node number for 

both exact and FEM solutions using 11 nodes as total 
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number of nodes in x and y directions is shown in Fig. 17. 

With increasing the number of nodes, the FEM solution is 

very close to the exact solution in most of the nodes with 

the 100% value prediction in the locations that has zero 

total head. 

 
Fig. 14. Variation of absolute error with node number for 

total head (number of nodes in X and Y directions = 5). 

 
Fig. 15. Variation of total head with node number for both 

exact and fem solutions (number of nodes in X and Y 

directions = 9). 

 
Fig. 16. Variation of absolute error with node number for 

total head (number of nodes in X and Y directions = 9). 

 

Fig. 17. Variation of total head with node number for both 

exact and fem solutions (number of nodes in X and Y 

directions = 11). 

The variation of the absolute error of total head prediction 

with node number for both exact and FEM solutions using 

11 nodes as total number of nodes in x and y directions is 

shown in Fig. 18. In most of the nodes, the FEM solution 

is very close to the exact solution with almost zero absolute 

error. Nevertheless, in several nodes; there is a quite high 

absolute error prediction with the maximum value of 88% 

at node 113 (upper right zone of the downstream). 

 
Fig. 18. Variation of absolute error with node number for 

total head (number of nodes in X and Y directions = 11). 

4. CONCLUSIONS 

In this study, an exact solution approach as Fourier 

series of the Laplace partial differential equation has been 

introduced to solve one of the geotechnical problems, the 

seepage of water under a sheet pile, which adopts also a 

finite element method. Even though of considering Fourier 

series an exact solution for the Laplace equation, it is 

originally an approximate procedure due to n points which 

cannot be infinite. The following results can be pointed out: 

1- Both exact and finite element solutions have a good 

match in distribution over the studied area especially 

when the Fourier points are increased.  

2- In general, the absolute errors of total head prediction 

are reasonable except in the top surface where the 

absolute error may reach 88% when the total number of 

nodes are 11 in both x and y directions. 
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