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A B S T R A C T  

In the design of earth dams, it must be considered that 
the water leakage through the earth dam generates 
upward and pore pressure, in addition to leakage 
forces that cause internal erosion, which has a direct 
influence on the structural stability of this system. 
Also, the rising and dropping in the water level has a 
direct effect on the stability of the dam's face slope. 
One way to solve these issues is the installation of a 
core or a horizontal water drainage system. The 
present study relied on the GEO-Studio computer tool 
to evaluate cross-sectional models of earthen dams by 
determining the safety factor under different 
situations represented by a change in filter type, and 
the flow state as a result of raising and lowering the 
water level at the dam reservoir and the full fill 
condition of the dam reservoir. The research found 
that the existence of a core substantially contributed 
to improving the safety coefficient for the case of rising 
the water level (2m) and rapidly rising by assigning it 
the greatest safety coefficient values. The absence of a 
filter had an opposite influence on the safety 
coefficient by decreasing it. Also, the factor of safety 
for the downstream slope was affected by less than 5% 
for different flow conditions, compared with the 
higher effect generated by the upstream slope. 
Furthermore, an artificial neural network model with 
an accuracy ratio of more than 97% was developed for 
the predicted safety factor. 
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 التحليل النظري وتطوير نموذج الشبكة العصبية الاصطناعية لتقييم استقرار منحدر السد الترابي 

 العراق.  -  تكريت/  تكريت/ كلية الهندسة / جامعة  مدنيةقسم الهندسة ال                        رقية عبد حسين

 العراق.  - تكريت / تكريتجامعة  / هندسةالكلية   /  مدنيةالقسم الهندسة               اسماء عبد الجبار جميل 

 الخلاصة 
عند تصميم السدود الترابية يجب الاخذ بنظر الاعتبار أن تسرب المياه خلال السد الترابي يولد ضغطا للإصعاد، اضافة الى قوى  
التسرب التي تسبب الانجراف الداخلي لتأثيرها المباشر على استقرار هذا المنشأ. كما ان الارتفاع والانخفاض بمنسوب الماء له تأثير  

استقرار  استخدام منظومة    مباشر على  أو  للتسرب  استخدام لب مانع  المشاكل فان  للحد من هذه  الامامي للسد. ومحاوله  المنحدر 
في تحليل نماذج    GEO-Studioتصريف مياه أفقية هو أحد الحلول. حيث اعتمدت الدراسة الحالية على استخدام البرنامج الحاسوبي  

مختلفة متمثلة بتغير نوع المرشح المستخدم، وحالة الجريان نتيجة رفع وخفض    مقطع السد الترابي لتقدير معامل الأمان ولحالات
منسوب الماء عند خزان السد وحالة ملئ خزان السد بالكامل. حيث أظهرت النتائج ان وجود اللب قد ساهم وبشكل كبير في تعزيز 

إعطائه اعلى قيم معامل امان. في حين ان عدم  معامل الأمان في حالة ملئ خزان السد وحاله رفع السريع لمنسوب الماء وذلك ب
تأثير عكسي على معامل الأمان ليكون هو الأقل.   له  أقل من    أيضًا، وجود مرشح كان  السد بقيمه  لمؤخر  ٪  5تأثر عامل الأمان 

عصبية صناعية تعمل   مقارنةً بتأثير اعلى ناتج عند ميلان مقدم السد. بالإضافة لذلك تم انشاء نموذج شبكة المختلفة،لظروف التدفق  
 %. 97على التنبؤ بمعامل الأمان وبنسبة دقة اعلى من 

  . المنحدر استقراريه افقي،مرشح  ترابي،سد   اللب، ،ANN :الدالة الكلمات
1. INTRODUCTION
Any soil structure with a slope is exposed to 
shear forces throughout the soil mass along the 
slope. It is related to gravitational effects 
attempting to draw down portions of the soil 
mass next to the slope. Various theories and 
analytical procedures, such as the technique of 
slices, were developed to estimate the critical 
slip surface and the associated safety factor, 
Eq.1: [1] 

𝐹. 𝑆 =
𝜏𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔

𝜏Mobilization

     … (𝟏) 

Also, the Artificial Neural Network (ANN) 
method has considerable potential in the 
technical monitoring of dams. This technique is 
conceptually and economically acceptable, as it 
avoids the need for difficult and costly unit 
replacement while still supplying information 
on the overall stability of the dam. Usama et al. 
[2] provided an analytical formula to compute 
the safety factor, which was dependent on the 
soil and hydraulic characteristics of the dam's 
shell, core, and filter. Using nine specified slope 
stability techniques, Spencer and General Limit 
Equilibrium (GLE) were the nearest to the 
safety conditions. Maimunah et al. [3] analyzed 
the effect of the reservoir water depth on the 
stability of non-homogenous earthen dam 
models. The lowest safety factor occurred at a 
slope of 1:1 with 1.4710. Also, the higher the 
water height, the more the slope deformed. 
Krikar et al. [4] investigated the effect of shell 
hydraulic conductivity on upstream slope 
stabilization during rapid drawdown. The most 
critical issue for the dam's upstream face with 
low hydraulic conductivity material is the water 
inside the soil slowly drains, which leads the 
dam's upstream slope to become unstable. 
Saleh et al. [5] investigated the probable slip 
surface of the zone earth dams with varying 
upstream heads under fast drawdown and 

earthquake activity. The upstream slope was 
found to be unstable during fast drawdown 
conditions with an earthquake-force impact of 
0.1g, and the lowest value of the safety factor 
reported was 0.857. Hasan [6] compared the 
overall resistance and propelling forces used to 
calculate the safety factor against equilibrium 
loss. The computed amount of the safety factor 
was measured for the end stages, operating, and 
quick drawdown. Mohammed et al. [7] 
investigated Haditha dam and determined that 
the factor of safety readings for upstream and 
downstream slope safety matched the 
minimum standard for all water stages. Isaida 
et al. [8] evaluated the safety factor of the slope 
downstream using the Geo-Studio software for 
mattresses and flow spectra analysis. Higher 
slopes were achievable as a consequence of 
applying the rules of unsaturated soil 
mechanics considering the slope stability in 
earth dams. Abdolreza et al. [9] discovered that 
increasing the number of drains in the 
upstream shell of the upstream slope under 
sudden drawdown circumstances increased the 
stability factor. It was also discovered that 
constructing drains in the lower section of the 
upstream shell of earth dams provided better 
stability, than inserting drains at higher levels. 
Jelena et al. [10] designed a neural network 
model for predicting pore and total pressure in 
earth dams. As well, they demonstrated its 
operational use for finding complicated non-
linear relationships between input and output 
parameters. Erzin et al. [11] created an Artificial 
Neural Network and Multiple Regression 
models to estimate the essential factor of the 
safety ratio of a standard natural slope exposed 
to seismic effects. Asmaa et al. [12] estimated 
the slope safety factor using an artificial neural 
network model coupled with the Geo-Studio 
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finding of a dam with a toe filter. The reported 
models had good accuracies (97.8% to 99.2%). 
Adnan et al. [13] checked the safety of the Shirin 
earthen dam at three different levels of the 
water reservoir. It was founded that the 
existence of the dam's core had a substantial 
influence on limiting the quantity of leakage 
through the dam's structure by (99%). 
Furthermore, it was discovered that the 
minimum safety factor was 1.95 and appeared 
around (4 days) of fast storage tank emptying, 
indicating that the upstream slope of the dams 
was stable throughout water removal. The rapid 
increase of water level always corresponds to 
the quick increase of hydraulic gradient and 
then a quicker seepage flow, which could 
further cause the instability of the earth’s slope. 
The present study aims to estimate the safety 
coefficient of the dam's slope with various types 
of filters and for various flow cases involving 
rising, falling water levels, and rapidly rising 
and drawing down water in a reservoir. In 
addition, the present study aims to develop a 
neural network model that predicts the 
behavior of the dam's slope stability criteria. 
 
 
2.SETUP METHODOLOGY 

The present work was based on three earth dam 
models at unsteady flow. It was simulated using 
the Geo Studio program with various forms of 
filters (no filter, (model I); horizontal filter, 
(model II); and central core, (model III)), 

various upstream slopes 
𝑉

𝐻 
(

1

3
,

1

2.25
, 𝑎𝑛𝑑 

1

2.5
), and 

various values of the hydraulic conductivity 
coefficient (𝑘𝑦/𝑘𝑥) ratios (1, 0.5, and 2). While 
the unsteady flow was represented by rising and 
drawing down (2m) of the upstream head, and 
rapidly rising and drawing down the total 
upstream head in 7 days. Thus, 108 tests were 
performed, see Figs (1, 2, 3). For each test, the 
input and outcomes are stated in Eq. 2 . 

[
𝐹. 𝑆 𝑓𝑜𝑟

𝑈

𝑆

𝐹. 𝑆 𝑓𝑜𝑟
𝐷

𝑆

]

= 𝑓 (

U

S
Slope ,

𝑘𝑦

𝑘𝑥
 , Filter , Flow case[Rise 

Up, Draw Down, Rapidly Rise Up,
Rapidly draw down]

) … (𝟐) 

Figs (4, 5) show the critical slip surface, a factor 
of safety, and slip forces using the sub-
programs SLOP/W. 

 
Fig 1. Model I. 

 
Fig 2. Model II. 
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Fig 3. Model III. 

  
Fig 4. The Slip Surface by SLOP/W. 

 
Fig 5. Slice Information by SLOP/W. 

3.RESULTS AND DISCUSSION 
3.1.Slope Stability at End of 

Construction and Steady State Flow 
Table 1 shows the results of the safety 
coefficient in both the end of construction (case 
1) and the end of filling the reservoir (case 2) 
cases, represented by the steady flow, the three 
models of dams, and both upstream and 
downstream of the dam. The results showed 
that the safety factor for all cases was higher 
than 1.5. Also, filling the reservoir contributed 

to increasing the safety factor of the upstream 
slope as the water in the reservoir stabilized the 
upstream slope. While a decrease in the safety 
coefficient of the downstream slope was 
observed as a result of filling the reservoir 
(constant flow condition). 

Table 1. The factor of Safety ky/kx=1, U/S= 1:3 

F.S  Model 
I 

Model 
II 

Model 
III 

Upstream 

Case 
1 

2.045 2.045 2.045 

Case
2 

2.288 2.338 2.321 
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Downstrea
m 

Case 
1 

1.85 1.85 1.85 

Case
2 

1.599 1.753 1.759 

3.2.Slope Stability at Unsteady Flow 
The results showed that the effect of a safety 
coefficient for the slope downstream of the 
dam, as a result of the rising and drawing down 
in water level at the dam’s reservoir, differed in 
the safety coefficient from the condition of the 
steady state flow, with values below 5% for the 
first and second models, and less than 1% for 
the third model for various cases of flow 
condition, see Fig 8 Whereas the results showed 
a significant effect on the safety coefficient 
values of the upstream slope of the dam as a 
result of the change in the flow condition and 
for the studied models. The effect of the rising 
and drawdown of the water level had a 
significant impact on the upstream safety factor 
of the dam's upstream slope. For the three 
studied models, Fig 6 indicates the 
relationships between the permeability 
coefficient (𝑘𝑦/𝑘𝑥)  and the upstream slope 
stability coefficient (F.S U/S) of the upstream 
dam, as a result of raising and reducing the 
water level and rapidly filling the dam reservoir. 
It is interesting to note that altering the 
permeability factor from (0.5) to (1) reduced the 
safety factor by (4.5%, 3.6%, 8.9%, and 1%) for 
model I, and each period of rising the water 
level, reducing the water, rapidly filling with 
water and rapidly draw down reservoir water, 
respectively. As these percentages are 
comparable for each of the three studied 
models in the present study. It is also valuable 
to note that the lowest value of the safety 
coefficient was for the case where the water 
level was lowered by (2m) and the permeability 
coefficient (2) was (2.176), whereas the lowest 
safety coefficient for the case that the water 
level (2m) raised and the permeability 
coefficient (2) was (2.302), which was higher 
than the previous case. The lowest result that 
was achieved while filling and drawing down 
the dam reservoir within seven days was with a 
permeability coefficient of (2) equals (2.95, and 
1.593), respectively. It can be stated that the 
vertical permeability was greater than the 
horizontal permeability causing lower values of 
the safety coefficient. The presence of the core 
(model III) also considerably helped to improve 
the safety coefficient in the case of filling and 
drawing down rapidly the dam reservoir by 
giving it the greatest safety coefficient values. In 
addition, it showed the highest safety 
coefficient in the case of rising the water level. 
While model I caused the lowest values of safety 
factors for the four flow conditions (raising, 
lowering, emptying, and filling the reservoir). 
Fig 7 shows the upstream slope effect. It is 
noted that adapting the slope from (1:2.25) to 
(1:2.5) for a model I increased the safety 
coefficient by (7.8%, 8%, and 7.4%) for raising 

the water level (2m), lowering the water level 
(2m), and filling the dam's reservoir, 
respectively; besides reducing the safety 
coefficient by (1.7%) for rapidly drawing down 
the reservoir. It is also worth noting that the 
greatest value of the safety coefficient was 
(3.439) when the dam reservoir was filled in 
seven days, and the slope was steep (1:3). While 
rapidly drawing down in the dam reservoir had 
the lowest value (1.53) with (1:2.5). The 
difference in percentage between the previous 
two situations was (55.5%). So, it can be 
concluded that the condition of filling the dam 
reservoir within seven days posed insignificant 
danger compared to the drawn-down cases due 
to the large safety coefficient values. 

 
Fig 6. Relationship between the coefficient of 
permeability and factor of safety at U/S=1:3. 

 
Fig 7. Relationship between the upstream 

slope and factor of safety at ky/kx=1. 

 
Fig 8. Relationship between the downstream 

slope and factor of safety at ky/kx=1. 

Fig 9 indicates the change in the safety factor of 
the upstream dam's face with time., It was 
observed that when the water level raised, there 
was a quick increase in the safety factor, 
followed by a minor drop, until stabilizing at a 
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horizontal level. The initial rise in safety factor 
was because the water formed a vertical 
pressure that stabilized and strengthened the 
stability of the dam's front slope. Such behavior 
was opposite to what occurred when the water 
level was lowered or drawn down rapidly, where 
a quick decrease in the critical safety coefficient 
was noticed over time, followed by a steep rise 
in the safety coefficient's value. However, when 
the dam reservoir was filled, the safety 
coefficient was raised with a behavior similar to 
the rise in the water level. While Fig 10 shows a 
very low change in the downstream stability 
factor. 

 
Fig 9 . The change in the Upstream safety 

factor over time for model I . 

 
Fig 10. The change in the Downstream safety 

factor over time for model I . 

Fig 11 (a) represents the slip shear resistance 
and shear mobilized below the slices of the 
critical slip surfaces for initial states and after 
the 7-day rise, which had identical values for the 
three models, to describe the behavior of the 
analyzed situation by its shell throughout the 
rapid rise up. The shear resistance was 
considerably larger than the shear mobilized in 
the initial state. From the beginning of the 
rising process until the end, the variation 
between shear mobilized and shear resistance 
tended to decrease, however, the shear 
mobilized was never greater than the shear 
resistance, indicating that the model was safe 
under fast rising. After the reservoir was filled, 
a difference in stress values between the three 
models began to form. After 60 days, there was 
a significant difference, as shown in Fig 9(b). 
The ultimate factor of safety was calculated by 
dividing the area below the resistance curve by 
the area below the mobilized shear curve. 

 
(a) 

(b) 
Fig 11. Slip shear mobilization and resistance 
at critical slip surface slices for rapid rise up at 
(a) initial condition, and 7 days, (b) 60 days. 

3.3.ANN Models Results 
Artificial neural networks (ANN) are equivalent 
to the human nervous system. The back-
propagation network is the most commonly 
utilized form of neural network. The three-layer 
back-propagation network model has been 
proven to produce acceptable results for 
prediction and simulation in any engineering 
application [14]. The back-propagation method 
of the multilayer perceptron (MLP) was used in 
the present study, as shown in Fig 12. The back-
propagation approach was based on the error 
correction learning function, which had two 
primary pathways. The input variable was 
applied to the network in the forward pathway, 
and its effects were transmitted via 
intermediate hidden layers to the output layer, 
where the output vector created the network's 
reasonable solution. The neural network 
structure comprised three levels: input, hidden, 
and MLP output layers, with several neurons 
evaluated for network layout in each layer. The 
number of available neurons in the input and 
output layers was determined by the nature of 
the issue under examination, whereas the 
number of neurons in the hidden layers, as well 
as the number of these layers, was decided by 
trial and error to decrease order and 
subsequently to decrease the model's 
percentage of error. In the present study, neural 
networks with two input nodes and three 
output nodes were studied in SPSS. The data 
were standardized using Eq. 3 depending on the 
output transfer function [14]. 

𝑋𝑛 =
2(𝑋−𝑋𝑚𝑖𝑛)

𝑋𝑀𝑎𝑥−𝑋𝑚𝑖𝑛
− 1     ... (3) 
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Table. 2 shows the estimated weight 
parameters, which were generated for the 
hidden and output layers' transfer functions 
(tangent hyperbolic-tangent hyperbolic). The 
input and output layers were divided into three 
groups: 70% for training, 10% to check that the 
network was generalizing and to terminate 
training before errors, and 20% to test the 
development due accurately independently. To 
obtain the results for the advanced models, the 
following expression, Eq. 4, was used. 

Output = ∑ (Wj ∗ (tanh (∑ (Wij ∗ (Input)i)
m
i=1

n
j=1 +

Biasj))) + Bias    ... (4) 

The accuracy of the results obtained based on 
the weights of the artificial neural network and 
the results obtained by Slope/W for models are 
shown in Figs (13, 14, 15). 

 

Fig 12. Artificial Neural Network Model. 

 
Fig 13. Model I Performance. 

 
Fig 14. Model II Performance. 

 
Fig 15. Model III Performance. 

Table 2. Parameter Estimates 

Predictor 
Case 
Study 

Predicted 
Hidden Layer 1 Output Layer 

H(1:1) H(1:2) H(1:3) 
F.S Rapidly 
Rise up 

F.S Drawdown F.S Rise up 
F.S Rapidly 
drawdown 

Input 
Layer 

(Bias) 
I 1.130 -0.399 -0.322     

II -0.564 1.507 -0.250     

III 1.298 1.152 -.013     

kykx 
I 0.408 0.034 -0.487     

II -1.656 -0.710 0.858     

III 0.013 0.616 0.086     

us 
I -2.213 -0.884 0.408     

II 1.467 -0.498 -0.457     

III 0.570 -.150 2.523     

Hidden 
Layer 1 

(Bias) 
I    0.141 -0.082 -0.037 0.546 
II    -1.102 -0.145 1.419 0.790 

III    -1.380 -.225 0.842 -.335 

H(1:1) 
I    0.122 -0.156 0.071 -1.280 
II    -1.384 -0.812 -0.618 0.405 
III    1.817 0.539 -.299 -.961 

H(1:2) 
I    -0.301 -0.847 -0.887 1.043 
II    0.742 -0.529 -1.463 -1.066 
III    -.500 -.649 -.546 0.652 

H(1:3) 

I    1.243 0.755 0.749 -0.138 
II    0.214 0.987 1.058 0.157 

III    3.212 1.861 1.134 -1.686 
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3.3.1. Validation ANN Results  
Statistical indices such as coefficient of 
determination (R2), mean absolute error 
(MAE), average accuracy (AA), and relative 
error were used to evaluate the performance of 
the models in the present study. The qualitative 
comparison of model performance was 
categorized into four categories depending on 
the AA index Eq.5 [15]: 

𝐴𝐴 < 0.1          𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 relation
0.1 < 𝐴𝐴 < 0.2        𝐺𝑜𝑜𝑑 relation
0.2 < 𝐴𝐴 < 0.3         𝐹𝑎𝑖𝑟 relation
𝐴𝐴 > 0.3                   𝑊𝑒𝑎𝑘 relation

      … (5) 

Table 3 displays the values involved with each 
of the statistical indicators associated with 
various models during the training and testing 
phase. In terms of statistical indicators related 
to the present study, the mean absolute error 
(MAE) and the coefficient (AA) were close to 
zero while R2 was close to one, indicating that 
the outputs were accurate, and the real and 
predicted values were excellently related to 
each other. Examining these indicators for 
various models and flow conditions showed 
that the difference in model accuracy was 
extremely minimal and that all three models 
had acceptable and close responses that can be 
utilized throughout the test (validation) phase. 

Table 3. Statistical values of ANN models 

Model 
No. 

Case 
Study 

Coefficie
nt of 

determin
ation 
(R2) 

Relative Error Mean 
Absolute 

Error 
(MAE) 

Average 
Accuracy 

(AA) Training Testing 

Model 
I 

Rapidly 
Rise Up 

0.997 0.009 0.0085 0.024 0.976 

Draw 
down 

0.998 0.005 0.007 0.025 0.975 

Rise Up 0.989 0.009 0.0082 0.020 0.980 

Rapidly 
Draw 
Down 

0.997 0.002 0.007 0.030 0.970 

Model 
II 

Rapidly 
Rise Up 

0.993 0.011 0.009 0.005 0.995 

Draw 
down 

0.989 0.009 0.0081 0.003 0.997 

Rise Up 0.995 0.013 0.0092 0.005 0.995 

Rapidly 
Draw 
Down 

0.996 0.005 0.005 0.008 0.992 

Model 
III 

Rapidly 
Rise Up 

0.996 0.004 0.004 0.013 0.987 

Draw 
down 

0.987 0.005 0.006 0.018 0.982 

Rise Up 0.991 0.008 0.007 0.010 0.990 

Rapidly 
Draw 
Down 

0.995 0.004 0.008 0.009 0.991 

4.CONCLUSIONS 
The following are the major outcomes of the 
current study; When vertical permeability was 
greater than horizontal permeability, results 
had lower values of the safety coefficient. 
The presence of the core greatly contributed to 
enhancing the safety coefficient in the case of 
filling the dam reservoir by giving it the highest 
safety coefficient values Also, it showed the 
highest safety coefficient in the case of raising 
the water level. On the other hand, the absence 
of a filter affected the safety factor, which had 
its lowest value in all flow states. 

Once the water level raised, the safety factor 
rapidly increased for a short period before 
slightly dropping to settle at a horizontal 
level. The initial rise in the safety factor was 
because the water produced a vertical 
pressure that stabilized and enhanced the 
stability of the dam service's slope. However, 
such behavior was the opposite of what 
occurred when the water level was lowered; a 
quick reduction in the critical safety 
coefficient was noticed with time, and then its 
value recovered. 
There was a variation between the shear 
mobilized and the shear resistance, which 
tended to decrease with time when water 
levels rapidly rose, but the shear mobilized 
was never greater than the shear resistance, 
indicating that the model was safe under fast 
rising. 
The accuracy of the results obtained based on 
the weights of the artificial neural network 
and the results obtained by Slope/W for 
models was so high. 
A decrease in the safety coefficient of the 
downstream slope was found as a result of 
filling the reservoir after the end of 
construction. 
The safety coefficient for the downstream 
slope differed from the condition of the 
steady state flow with values not exceeding 
5% for the model I and model II, and less than 
1% for model III for different studied cases of 
the flow conditions. 

NOMENCLATURE 

𝑘𝑦/𝑘𝑥 Hydraulic Conductivity Coefficient. 

Wj The Coefficients of Connection Weights. 

R2 Coefficient of Determination. 

𝑋𝑛 Normalize Value. 

𝜏𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 Resisting Stress. 

𝜏Mobilization  Mobilization Shear Strength. 
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