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In the design of earth dams, it must be considered that
the water leakage through the earth dam generates
upward and pore pressure, in addition to leakage
forces that cause internal erosion, which has a direct
influence on the structural stability of this system.
Also, the rising and dropping in the water level has a
direct effect on the stability of the dam's face slope.
One way to solve these issues is the installation of a
core or a horizontal water drainage system. The
present study relied on the GEO-Studio computer tool
to evaluate cross-sectional models of earthen dams by
determining the safety factor under different
situations represented by a change in filter type, and
the flow state as a result of raising and lowering the
water level at the dam reservoir and the full fill
condition of the dam reservoir. The research found
that the existence of a core substantially contributed
to improving the safety coefficient for the case of rising
the water level (2m) and rapidly rising by assigning it
the greatest safety coefficient values. The absence of a
filter had an opposite influence on the safety
coefficient by decreasing it. Also, the factor of safety
for the downstream slope was affected by less than 5%
for different flow conditions, compared with the
higher effect generated by the upstream slope.
Furthermore, an artificial neural network model with
an accuracy ratio of more than 97% was developed for
the predicted safety factor.

* Corresponding author: E-mail: ms.asmaajameel @tu.edu.iq , Civil Engineering Department, College of Engineering,

Tikrit University, Tikrit, Iraq.


http://doi.org/10.25130/tjes.29.4.1
http://doi.org/10.25130/tjes.29.4.1
http://doi.org/10.25130/tjes.29.4.1
http://doi.org/10.25130/tjes.29.4.1
http://doi.org/10.25130/tjes.29.4.1
mailto:ms.ruqiyaabed@tu.edu.iq
mailto:ms.asmaajameel@tu.edu.iq
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.25130/tjes.29.4.1
mailto:ms.asmaajameel@tu.edu.iq

Rugiya Abed Hussain, Asmaa Abdul Jabbar Jamel / Tikrit Journal of Engineering Sciences (2022) 29(4): 1-9

I AN Al jandia ) i) andll Lo UikaY) duand) ASuA) 73 gad gl (5 B Julacil)

Bpa)) - S5/ S5 Al / Al A/ ind) Aussig) o
Ba)) - a8 S5 Al / sl 1S / i) Aussigl) o

Cpens 30 48
e bl ae plead

AaMAl

G A Al el Uaiia ol gy ol 531 ) O slaall oy o Sl W) hs 3V Gaag 3l 530 0 50l apenal 2ic
Ll Al el o guiay (a5 gl )W) of LS Lanall 138 51 aiu) e il b 53l J1aal) Gal i) s ) o )
Loshie aladin) s el wile G aladind Gl JSLad) o3a (e aall alglasy aull dle¥) Dasiall il e e
i Jilas 8 GEO-Studio (s selal) gyl alasind e 4l dul )l cadie ) Cum Jolall aal 8 23880 olya iy yoa
Uaid g ad )y At el Al g caadiuall i pall g sy Aliaie daliie YT g Gl Jalaa ol ol il aud) adaie
D o LmS IS s aale 38 Calll 5 g s o gl @ pedal s JalSIG Al o) 34 e Alla s ol Gl 33 die el G g
pe Ol o Lok Jalae a o) aithaely @l oLl gl g pudl ad) alla g 2l A e Al 8 YY) Jalae
75 Oa JE aas sl jasal gl ddle Sl dlad BB sa oS ) ddlae e aSe 5l Al OIS e asa s
s Ao lia dgnac 4S5 73 sad oLl a3 Gl ABLaYl sl adie (Do ie 0 el il 4 )le daliaad) sixdl g kil

%97 O Sl A8 iy s GV Jalaay il e

Loaial) 4 ) il ¢ 88 i e o) 5 du culll ANN A1) cilalst)

1. INTRODUCTION
Any soil structure with a slope is exposed to
shear forces throughout the soil mass along the
slope. It is related to gravitational effects
attempting to draw down portions of the soil
mass next to the slope. Various theories and
analytical procedures, such as the technique of
slices, were developed to estimate the critical
slip surface and the associated safety factor,
Eq.1: [1]

F.§S=

TResisting (1)
TMobilization

Also, the Artificial Neural Network (ANN)
method has considerable potential in the
technical monitoring of dams. This technique is
conceptually and economically acceptable, as it
avoids the need for difficult and costly unit
replacement while still supplying information
on the overall stability of the dam. Usama et al.
[2] provided an analytical formula to compute
the safety factor, which was dependent on the
soil and hydraulic characteristics of the dam's
shell, core, and filter. Using nine specified slope
stability techniques, Spencer and General Limit
Equilibrium (GLE) were the nearest to the
safety conditions. Maimunah et al. [3] analyzed
the effect of the reservoir water depth on the
stability of non-homogenous earthen dam
models. The lowest safety factor occurred at a
slope of 1:1 with 1.4710. Also, the higher the
water height, the more the slope deformed.
Krikar et al. [4] investigated the effect of shell
hydraulic conductivity on upstream slope
stabilization during rapid drawdown. The most
critical issue for the dam's upstream face with
low hydraulic conductivity material is the water
inside the soil slowly drains, which leads the
dam's upstream slope to become unstable.
Saleh et al. [5] investigated the probable slip
surface of the zone earth dams with varying
upstream heads under fast drawdown and

earthquake activity. The upstream slope was
found to be unstable during fast drawdown
conditions with an earthquake-force impact of
0.1g, and the lowest value of the safety factor
reported was 0.857. Hasan [6] compared the
overall resistance and propelling forces used to
calculate the safety factor against equilibrium
loss. The computed amount of the safety factor
was measured for the end stages, operating, and
quick drawdown. Mohammed et al. [7]
investigated Haditha dam and determined that
the factor of safety readings for upstream and
downstream slope safety matched the
minimum standard for all water stages. Isaida
et al. [8] evaluated the safety factor of the slope
downstream using the Geo-Studio software for
mattresses and flow spectra analysis. Higher
slopes were achievable as a consequence of
applying the rules of unsaturated soil
mechanics considering the slope stability in
earth dams. Abdolreza et al. [9] discovered that
increasing the number of drains in the
upstream shell of the upstream slope under
sudden drawdown circumstances increased the
stability factor. It was also discovered that
constructing drains in the lower section of the
upstream shell of earth dams provided better
stability, than inserting drains at higher levels.
Jelena et al. [10] designed a neural network
model for predicting pore and total pressure in
earth dams. As well, they demonstrated its
operational use for finding complicated non-
linear relationships between input and output
parameters. Erzin et al. [11] created an Artificial
Neural Network and Multiple Regression
models to estimate the essential factor of the
safety ratio of a standard natural slope exposed
to seismic effects. Asmaa et al. [12] estimated
the slope safety factor using an artificial neural
network model coupled with the Geo-Studio
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finding of a dam with a toe filter. The reported
models had good accuracies (97.8% to 99.2%).
Adnan et al. [13] checked the safety of the Shirin
earthen dam at three different levels of the
water reservoir. It was founded that the
existence of the dam's core had a substantial
influence on limiting the quantity of leakage
through the dam's structure by (99%).
Furthermore, it was discovered that the
minimum safety factor was 1.95 and appeared
around (4 days) of fast storage tank emptying,
indicating that the upstream slope of the dams
was stable throughout water removal. The rapid
increase of water level always corresponds to
the quick increase of hydraulic gradient and
then a quicker seepage flow, which could
further cause the instability of the earth’s slope.
The present study aims to estimate the safety
coefficient of the dam's slope with various types
of filters and for various flow cases involving
rising, falling water levels, and rapidly rising
and drawing down water in a reservoir. In
addition, the present study aims to develop a
neural network model that predicts the
behavior of the dam's slope stability criteria.

2.SETUP METHODOLOGY

24.00000; 86.000000 m | G
s e e

The present work was based on three earth dam
models at unsteady flow. It was simulated using
the Geo Studio program with various forms of
filters (no filter, (model I); horizontal filter,
(model II); and central core, (model III)),
. vV (1 1 1

various upstream slopes — (5, —oand E)’ and
various values of the hydraulic conductivity
coefficient (ky/kx) ratios (1, 0.5, and 2). While
the unsteady flow was represented by rising and
drawing down (2m) of the upstream head, and
rapidly rising and drawing down the total
upstream head in 7 days. Thus, 108 tests were
performed, see Figs (1, 2, 3). For each test, the
input and outcomes are stated in Eq. 2.

F.S v
.forS

F.S D
.forS

kx
Up, Draw Down, Rapidly Rise Up,

Rapidly draw down]

U
—Slope, ,Filter, Flow case[Rise

S

=f - (2)

Figs (4, 5) show the critical slip surface, a factor
of safety, and slip forces using the sub-
programs SLOP/W.
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Fig 5. Slice Information by SLOP/W.
3.RESULTS AND DISCUSSION to increasing the safety factor of the upstream
3.1.Slope Stability at End of slope as the water in the reservoir stabilized the

Construction and Steady State Flow
Table 1 shows the results of the safety
coefficient in both the end of construction (case
1) and the end of filling the reservoir (case 2)
cases, represented by the steady flow, the three
models of dams, and both upstream and

upstream slope. While a decrease in the safety
coefficient of the downstream slope was
observed as a result of filling the reservoir
(constant flow condition).

Table 1. The factor of Safety ky/kx=1, U/S=1:3

Model Model Model
downstream of the dam. The results showed F.S I II 11
that the safety factor for all cases was higher Cﬁise 2.045 2.045 2.045
than 1.5. Also, filling the reservoir contributed Upstream Case
> 2.288 2.338 2.321
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Case
Downstrea 1

c
m € 1599 1.753 1.759

3.2.Slope Stability at Unsteady Flow

The results showed that the effect of a safety
coefficient for the slope downstream of the
dam, as a result of the rising and drawing down
in water level at the dam’s reservoir, differed in
the safety coefficient from the condition of the
steady state flow, with values below 5% for the
first and second models, and less than 1% for
the third model for various cases of flow
condition, see Fig 8 Whereas the results showed
a significant effect on the safety coefficient
values of the upstream slope of the dam as a
result of the change in the flow condition and
for the studied models. The effect of the rising
and drawdown of the water level had a
significant impact on the upstream safety factor
of the dam's upstream slope. For the three
studied models, Fig 6 indicates the
relationships between the permeability
coefficient (ky/kx) and the upstream slope
stability coefficient (F.S U/S) of the upstream
dam, as a result of raising and reducing the
water level and rapidly filling the dam reservoir.
It is interesting to note that altering the
permeability factor from (0.5) to (1) reduced the
safety factor by (4.5%, 3.6%, 8.9%, and 1%) for
model I, and each period of rising the water
level, reducing the water, rapidly filling with
water and rapidly draw down reservoir water,
respectively. As these percentages are
comparable for each of the three studied
models in the present study. It is also valuable
to note that the lowest value of the safety
coefficient was for the case where the water
level was lowered by (2m) and the permeability
coefficient (2) was (2.176), whereas the lowest
safety coefficient for the case that the water
level (2m) raised and the permeability
coefficient (2) was (2.302), which was higher
than the previous case. The lowest result that
was achieved while filling and drawing down
the dam reservoir within seven days was with a
permeability coefficient of (2) equals (2.95, and
1.593), respectively. It can be stated that the
vertical permeability was greater than the
horizontal permeability causing lower values of
the safety coefficient. The presence of the core
(model I1T) also considerably helped to improve
the safety coefficient in the case of filling and
drawing down rapidly the dam reservoir by
giving it the greatest safety coefficient values. In
addition, it showed the highest safety
coefficient in the case of rising the water level.
While model I caused the lowest values of safety
factors for the four flow conditions (raising,
lowering, emptying, and filling the reservoir).
Fig 7 shows the upstream slope effect. It is
noted that adapting the slope from (1:2.25) to
(1:2.5) for a model I increased the safety
coefficient by (7.8%, 8%, and 7.4%) for raising

1.85 1.85 1.85

the water level (2m), lowering the water level
(2m), and filling the dam's reservoir,
respectively; besides reducing the safety
coefficient by (1.7%) for rapidly drawing down
the reservoir. It is also worth noting that the
greatest value of the safety coefficient was
(3.439) when the dam reservoir was filled in
seven days, and the slope was steep (1:3). While
rapidly drawing down in the dam reservoir had
the lowest value (1.53) with (1:2.5). The
difference in percentage between the previous
two situations was (55.5%). So, it can be
concluded that the condition of filling the dam
reservoir within seven days posed insignificant
danger compared to the drawn-down cases due
to the large safety coefficient values.
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Fig 6. Relationship between the coefficient of
permeability and factor of safety at U/S=1:3.
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Fig 9 indicates the change in the safety factor of
the upstream dam's face with time., It was
observed that when the water level raised, there
was a quick increase in the safety factor,
followed by a minor drop, until stabilizing at a
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horizontal level. The initial rise in safety factor
was because the water formed a vertical
pressure that stabilized and strengthened the
stability of the dam's front slope. Such behavior
was opposite to what occurred when the water
level was lowered or drawn down rapidly, where
a quick decrease in the critical safety coefficient
was noticed over time, followed by a steep rise
in the safety coefficient's value. However, when
the dam reservoir was filled, the safety
coefficient was raised with a behavior similar to
the rise in the water level. While Fig 10 shows a
very low change in the downstream stability
factor.
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Fig 9. The change in the Upstream safety
factor over time for model I.
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Fig 11 (a) represents the slip shear resistance
and shear mobilized below the slices of the
critical slip surfaces for initial states and after
the 7-day rise, which had identical values for the
three models, to describe the behavior of the
analyzed situation by its shell throughout the
rapid rise up. The shear resistance was
considerably larger than the shear mobilized in
the initial state. From the beginning of the
rising process until the end, the variation
between shear mobilized and shear resistance
tended to decrease, however, the shear
mobilized was never greater than the shear
resistance, indicating that the model was safe
under fast rising. After the reservoir was filled,
a difference in stress values between the three
models began to form. After 60 days, there was
a significant difference, as shown in Fig 9(b).
The ultimate factor of safety was calculated by
dividing the area below the resistance curve by
the area below the mobilized shear curve.
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(b)
Fig 11. Slip shear mobilization and resistance
at critical slip surface slices for rapid rise up at
(@) initial condition, and 7 days, (b) 60 days.

3.3.ANN Models Results

Artificial neural networks (ANN) are equivalent
to the human nervous system. The back-
propagation network is the most commonly
utilized form of neural network. The three-layer
back-propagation network model has been
proven to produce acceptable results for
prediction and simulation in any engineering
application [14]. The back-propagation method
of the multilayer perceptron (MLP) was used in
the present study, as shown in Fig 12. The back-
propagation approach was based on the error
correction learning function, which had two
primary pathways. The input variable was
applied to the network in the forward pathway,
and its effects were transmitted via
intermediate hidden layers to the output layer,
where the output vector created the network's
reasonable solution. The neural network
structure comprised three levels: input, hidden,
and MLP output layers, with several neurons
evaluated for network layout in each layer. The
number of available neurons in the input and
output layers was determined by the nature of
the issue under examination, whereas the
number of neurons in the hidden layers, as well
as the number of these layers, was decided by
trial and error to decrease order and
subsequently to decrease the model's
percentage of error. In the present study, neural
networks with two input nodes and three
output nodes were studied in SPSS. The data
were standardized using Eq. 3 depending on the
output transfer function [14].

_ Z(X_Xmin)
X,=—"""22—-1 ..(3)

XMax—Xmin
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Table. 2 shows the estimated weight
parameters, which were generated for the
hidden and output layers' transfer functions
(tangent hyperbolic-tangent hyperbolic). The
input and output layers were divided into three
groups: 70% for training, 10% to check that the
network was generalizing and to terminate
training before errors, and 20% to test the
development due accurately independently. To
obtain the results for the advanced models, the
following expression, Eq. 4, was used.

Output = YL, (W  (tanh (X2, (W * (Input);) +
Bias;))) + Bias ... (4)

The accuracy of the results obtained based on

the weights of the artificial neural network and

the results obtained by Slope/W for models are

shown in Figs (13, 14, 15).
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Table 2. Parameter Estimates
Predicted
n Case Hidden Layer 1 Output Layer
Predictor
Stud I ; - 5 .
Ak H(1:1) H(1:2) H(1:3) giie lIl{;lmdly F.S Drawdown F.S Rise up g;&ggﬁy
I 1.130 -0.399 -0.322
(Bias) 11 -0.564 1.507 -0.250
III 1.298 1.152 -.013
) | 0.408 0.034 -0.487
Input kykx 11 -1.656 -0.710 0.858
Layer
III 0.013 0.616 0.086
) | -2.213 -0.884 0.408
us II 1.467 -0.498 -0.457
III 0.570 -.150 2.523
) | 0.141 -0.082 -0.037 0.546
(Bias) 11 -1.102 -0.145 1.419 0.790
III -1.380 -.225 0.842 -.335
) | 0.122 -0.156 0.071 -1.280
H(1:1) 11 -1.384 -0.812 -0.618 0.405
Hidden III 1.817 0.539 -.299 -.961
Layer 1 ) | -0.301 -0.847 -0.887 1.043
H(1:2) 11 0.742 -0.529 -1.463 -1.066
111 -.500 -.649 -.546 0.652
) | 1.243 0.755 0.749 -0.138
H(@1:3) II 0.214 0.987 1.058 0.157
111 3.212 1.861 1.134 -1.686
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3.3.1. Validation ANN Results

Statistical indices such as coefficient of
determination (R2), mean absolute error
(MAE), average accuracy (AA), and relative
error were used to evaluate the performance of
the models in the present study. The qualitative
comparison of model performance was
categorized into four categories depending on
the AA index Eq.5 [15]:

AA< 0.1 Excellent relation
0.1<A4A<0.2 Good relation )
02<AA<03  Fairrelation 2
AA > 0.3 Weak relation

Table 3 displays the values involved with each
of the statistical indicators associated with
various models during the training and testing
phase. In terms of statistical indicators related
to the present study, the mean absolute error
(MAE) and the coefficient (AA) were close to
zero while R? was close to one, indicating that
the outputs were accurate, and the real and
predicted values were excellently related to
each other. Examining these indicators for
various models and flow conditions showed
that the difference in model accuracy was
extremely minimal and that all three models
had acceptable and close responses that can be
utilized throughout the test (validation) phase.

Table 3. Statistical values of ANN models

Coefficie

Model Case ntof Relative Error A‘Mea‘m A
No. Study determin Error Accuracy
a(']l(‘:;‘ Training  Testing (MAE) (AA)
Rapidly

Rise Up 0.997 0.009 0.0085 0.024 0.976

Draw 0.998 0.005 0.007 0.025 0.975

Model down
I Rise Up 0.989 0.009 0.0082 0.020 0.980
Rapidly
Draw 0.997 0.002 0.007 0.030 0.970
Down
Rapidly o 0.011 0.00! 0.00 o
RiseUp 993 X -009 -005 -995
Draw
down 0.989 0.009 0.0081 0.003 0.997
Model
I RiseUp  0.995 0.013 0.0092 0.005 0.995
Rapidly
Draw 0.996 0.005 0.005 0.008 0.992
Down
Rapidly
Rise Up 0.996 0.004 0.004 0.013 0.987
dD;m 0.987 0.005 0.006 0.018 0.982
Model
I RiseUp  0.991 0.008 0.007 0.010 0.990
Rapidly
Draw 0.995 0.004 0.008 0.009 0.991
Down
4.CONCLUSIONS

The following are the major outcomes of the
current study; When vertical permeability was
greater than horizontal permeability, results
had lower values of the safety coefficient.

The presence of the core greatly contributed to
enhancing the safety coefficient in the case of
filling the dam reservoir by giving it the highest
safety coefficient values Also, it showed the
highest safety coefficient in the case of raising
the water level. On the other hand, the absence
of a filter affected the safety factor, which had
its lowest value in all flow states.

Once the water level raised, the safety factor
rapidly increased for a short period before
slightly dropping to settle at a horizontal
level. The initial rise in the safety factor was
because the water produced a vertical
pressure that stabilized and enhanced the
stability of the dam service's slope. However,
such behavior was the opposite of what
occurred when the water level was lowered; a
quick reduction in the critical safety
coefficient was noticed with time, and then its
value recovered.

There was a variation between the shear
mobilized and the shear resistance, which
tended to decrease with time when water
levels rapidly rose, but the shear mobilized
was never greater than the shear resistance,
indicating that the model was safe under fast
rising.

The accuracy of the results obtained based on
the weights of the artificial neural network
and the results obtained by Slope/W for
models was so high.

A decrease in the safety coefficient of the
downstream slope was found as a result of
filling the reservoir after the end of
construction.

The safety coefficient for the downstream
slope differed from the condition of the
steady state flow with values not exceeding
5% for the model I and model II, and less than
1% for model III for different studied cases of
the flow conditions.

NOMENCLATURE

ky/kx Hydraulic Conductivity Coefficient.

W; The Coefficients of Connection Weights.
R2 Coefficient of Determination.
X, Normalize Value.

TResisting Resisting Stress.

TMobilization ~ Mobilization Shear Strength.

REFERENCES

[1] Bakenaz A, Shahien M, Elshemy M.
Seepage and Slope Stability Analysis of
Earth Dams. ICOLD. 2018 June 1-7;
Veinna.

[2] Usama R, Thair Sh. Stability Analysis of
an Earth Dam Using GEOSLOPE Model
under Different Soil  Conditions.
Engineering and Technology Journal.
2018; 36(5): 523-532.

[3] Maimunah M, Kumala D. The Influence of
Water Level Fluctuation Reservoir
Stability of the Earth Dam. IOP Conf.

Series: Materials Science and
Engineering, 2018 December 8-9;
Indonesia.

[4] Krikar M, Sirwan G . The Influence of Shell
Permeability on Stability of Upstream
Slope during Rapid Drawdown — Khassa


mailto:ms.ruqiyaabed@tu.edu.iq
mailto:ms.asmaajameel@tu.edu.iq
https://tj-es.com/
https://www.sciencedirect.com/science/article/pii/S0016236117309511#!
https://www.sciencedirect.com/science/article/pii/S0016236117309511#!

[51]

[6]

[7]

[8]

[9]

Rugiya Abed Hussain, Asmaa Abdul Jabbar Jamel / Tikrit Journal of Engineering Sciences (2022) 29(4): 1-9

Chai Earth Dam as a Case Study. Iraqi
National Journal of Earth Sciences. 2021;
21(2):15-28.

Saleh I, Ali M. Stability Analysis of Zoned
Earth Dam under Effect of the Most
Dangerous Conditions (Case Study:
Khassa Chai Dam). International Journal
of Scientific & Engineering Research.
2019; 10 (12): 110-118.

Hasan T. Questioning the Parameters
Used in Slope Stability Analyses of
Embankment Dams. 5th Congress on
Dams: Mecodonia, 2021 September;
Struga, Mecodonia.

Mohammed K, Ibtisam R. Seepage and
Slope Stability Analysis of Haditha Dam
using Geo-Studio Software. IOP Conf.
Series: Materials Science and
Engineering, 2020 July; Thi-Qar, Iraq.
Isaida B. Ivelisse Castro Martinez, Jenny
Garcia Tristd, and Yoermes Gonzilez
Haramboure. Influence of unsaturated
soil permeability on the slopes of earth
dams.  Ingenieria  Hidraulica Y
Ambiental. 2019; 11(3): 86-100.
Abdolreza M, Yousef H, Farzin S, Gholam
M, Gholamreza M. Performance of the
horizontal drains in upstream shell of
earth dams on the upstream slope stability
during rapid drawdown conditions.
Arabian Journal of Geosciences. 2014; 7:

1957-1964.

[10] Jelena M, Milica M, Miona A, Srdjan Z,
Bojan B. ANN Model for Prediction of
Rockfill Dam Slope Stability. Technical
Gazette. 2021; 2(5):1488-1494.

[11] Erzin Y, Cetin T. The use of neural
networks for the prediction of the critical
factor of safety of an artificial slope
subjected to earthquake forces, Scientia
Iranica. 2012; 19(2):188-194.

[12] Asmaa A, Muataz I. Stability and Seepage
of Earth Dams with Toe Filter (Calibrated
with Artificial Neural Network). Journal
of Engineering Science and Technology.
2021; 16(5): 3712 — 3725.

[13] Adnan J, Marewan R, Ali K. Performance
Assessment of Shirin Earth Dam in Iraq
Under Various Operational Conditions.
Tikrit Journal of Engineering Sciences.
2022; 29 (2): 61-74.

[14] Kruse R., Borgelt C., Braune C.,
Mostaghim S., Steinbrecher M. Multilayer
Perceptrons. Computational Intelligence,
London; 2016.

[15] Li M, Tang X, Wu W, Liu H. General
models for estimating daily global solar
radiation for different solar radiation
zones in mainland China. Energy
Conversion and Management. 2013; 70:

139-148.


mailto:ms.ruqiyaabed@tu.edu.iq
mailto:ms.asmaajameel@tu.edu.iq
https://tj-es.com/
https://iopscience.iop.org/issue/1757-899X/928/2

