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ABSTRACT 

        This paper considers the time-varying behavior of 

composite steel-concrete beams with rigid or flexible connections 

under service loads. The age-adjusted effective modulus 

approach is used with evaluating of the aging coefficient 

 

in 

absence of connection and characterized by a theoretical point of 

view. For a simplified expression to evaluate 

 

and for an easy 

method to implement, a closed-form solution in the hypothesis of 

rigid connections and uncracked concrete is proposed. The 

method is verifyied by comparing with the results of another 

finite element model.  

KEYWORDS 

Age-adjusted modulus,  composite beams, creep, shrinkage, 

shear connectors.    
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INTRODUCTION 

     Steel-concrete composite beams are popular and have an 

economical form of construction in both buildings and bridges. 

Composite beams must satisfy the requirements of both strength 

and serviceability limit states.  To check the latter, a correct 

assessment of creep and shrinkage effects on stress and 

deflection response is very important, the assessment carried out 

generally in the hypothesis of linear-elastic behavior of steel and 

linear-viscoelastic behavior of concrete. It is pointed out that 

during the last few years the use of stronger materials has led to 

an increase in extreme-fiber stain at service load. As a result, 

deflection limits, mainly introduced to reduce concrete cracking 

and to preserve supported elements together with serviceability 

stress limits based on durability criteria, govern the design of 

composite beams more and more. 

     Since the closed-form solution available for riged and 

deformable connections, is referred to as a simplified viscous 

law, it cannot be adopted in general. Creep and shrinkage laws 

that follow the actual behavior of concrete (CEB 

1984,1990[7];ACI 1992[1]) are in fact very complex to be adopted 

and in any case, the exact solution can be determined only for 

very simple structural schemes. 

     For these reasons, in general actual codes make references 

to simplified algebraic methods for the practical evaluation of the 

time dependent response. They are the effective modulus (EM) 

method, the mean stress (MS) method, and the age-adjusted 
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effective modulus (AAEM) method if an accurate evaluation of 

viscous effects is required.  

     In this work, initially the aforementioned algebraic 

methods are characterized. Then, using the AAEM method, the 

age-adjusted effective modulus of a cross section is assumed as 

the one computed in the absence of shear connection. A criterion 

for its theoretical evaluation for creep and relaxation problems is 

provided. With reference to the CEB 90 code code, a simplified 

expression  to evaluate the age-adjusted effective modulus in a 

practical way and some useful interpretations on the properties of 

the proposed method are given. 

     A set of examples show the capability of obtaining very 

accurate, long-term solutions for composite beams with rigid or 

flexible connections. This property is very important since 

experimental tests have shown that in composite beams the 

interaction between the concrete slab and the steel beam is never 

complete.  

ALGEBRAIC METHOD  

     The difficulties, which are encountered when solving a 

viscous problem, are due to the fact that a law must be 

considered for concrete which within the hypothesis of linear 

viscosity may be presented in the following integral of stress-

strain law:  

                                                                                                    (1) 
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This is overcome by transforming the integral equation into a 

simple linear algebraic equation. In Eq. (1), c(t)= total strain in 

the concrete at time t ; n(t) = a stress-independent strain; c(t)= 

stress that at time to it has a finite value c(to) and in the interval 

(to,t) it varies arbitrarily; and (t, ) = creep function, usually  

provided by codes. In particular, the AAEM method, which is the 

most general and accurate among the algebraic methods, is based 

on the transformation of the superposition integral in Trost s 

(1967) algebraic equation is:  

                                                                                                    (2) 
                                                                                                                   

where (t,to) = an unknown coefficient [related to the unknown 

function c(t)].
[2] 

In this way, by introducing the creep coefficient (t,to) so that:  

                                                                                                    (3)  

where Ec( )= Young s modulus of concrete. If the strain c(t)- 

n(t) produced by the tension c(t) follows  the law  

       c(t)- n(t)= o+ 1 (t,to)                                                    (4)  

with o, 1 = arbitrary coefficients, the integral (2) is independent 

of c(t) and (t,to) can be exactly determined a priori. Indeed, to 

calculate (t,to), by introducing the relaxation function R(t,to), it 

is easy to obtain the equation [Bazant 1972][4].  

                                                                                                    (5) 
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The condition (4) therefore provides an easy determination 

of , once (t,to) is known and R(t,to) is determined. By this 

hypothesis, for a given , the constitutive equation (1) can be 

exactly transformed into the familiar algebraic equation   

                                                                                                    (6)                                                                                                           

 

where         = an imposed strain linked to the viscousity effects in 

the interval (t,to), while the quantities  

                                                                                                    (7) 

                                                                                                     

                                                                                                (8)  

are the fictitious modulus-effective modulus and age-adjusted 

effective modulus, respectively-the last one is easily known when 

the aging coefficient (t,to) is introduced.     

By means of (6), it is possible to deduce as, assuming the 

elastic modulus for the concrete be equal to Ecadj and introducing 

the imposed strain (t), that the viscous problem becomes a 

simple elastic equilibrium problem.  

    The AAEM method or 

 

method also covers a siginficant 

theoritical role since it makes easy to obtain the EM method by 

assuming 

 

=1 so that the material considered elastic with 

modulus Eceff (   is zero). By a theoritical point of view, the 

approximation adopted in this case is evident too: it consist in 
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calculating the integral of superposition expressed by (2) by the 

rectangular rule in a single time step. Assuming that modulus of 

concrete is constant at any time and equal to Ec, and taking 

 

=0.5 

, then the esxpression is immediately obtained at the base of the 

mean stress method where the determination of the superposition 

integral is solved by applying the trapizoidal rule in a single time 

step.  

AAEM METHOD FOR STEEL-CONCRETE COMPOSITE 

BEAMS 

    Following the hypotheses of the AAEM method for 

homogeneous structures, it is evedent that by adopting the  or  

values determined in line with (4), an approximate solution is 

determined for composite beams.  

    The nonhomogeneity, due to the presence of a viscous 

material (concrete) and an elastic material (steel), involves a 

migration of stresses from a point of the structure to another with 

variation laws that do not respect the equation (4). Due to this 

reason, Trost (1967) proposed two  coefficients in the presence 

of rigid connections: the former, N , related to the normal force 

in the concrete component beam; the latter, M, related to the 

bending moment in the same beam. In general, these two 

coefficients are not easily determinable. In the hypothesis of the 

strong steel beam with respect to the concrete slab as well as the 

affinity of the shrinkage law with the creep law, for creep or 

relaxation problems, Trost found simple relations to evaluate N 

in rigorous way and M in an approximate way. 
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     The complexity of the problem due to the presence of two 

coefficients  as well as the  limits due to the aforementioned 

hypotheses induced (Amadio 1993)[2] to to propose the use of an 

approximate  value only for the composite beams with rigid or 

deformable connections. For three elementary problems of creep, 

relaxation and shrinkage, these  values were evaluated in the 

hypothesis of no connection between the concrete and steel beam 

and collected in tabilar form for practical use.  

     Afterwards,in this paper, an exact theoretical formulation 

of this  coefficient for creep and relaxation problems is provided 

together with some practical expressions that supply  values for 

these two problems as well as shrinkage.   

VALUES FOR A CREEP PROBLEM (SUSTAINED 

LOAD) 

    In order to discuss the issues reported here, an infinitesimal 

element of a composite beam has to be considered without shear 

connection (Fig.1), and subjected to a constant bending moment 

Mo(x)in time. The concrete beam has area Ac, moment of inertia 

Ic, Young s modulus Ec(t) and a viscoelastic behavior, while the 

steel beam has area As, moment of inertia Is, Young s modulus 

Es and a linear-elastic behavior.     

In this case, each component beams works in parallel and due 

to creep effects in the concrete, at every time t, the bending 

moment in the beams varies, but owing to equilibrium and 

compatibility conditions, the stresses in every point of the slab 

follow the same law of variation. Therefore, the structure admits 
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only one value = M= c(t,to) for the section. Suposing c(t,to) is 

known, and using (6) it is possible to obtain the constitutive 

equations for the sections at time to and time t, according to the 

following form:   

                                                                                (9 a,b)       

                                                                               (10 a,b)  

where c(t), s(t), Mc(t), Ms(t), and c(to), s(to), Mc(to), Ms(to) 

= curvatures and bending moments in the beams at long-term and 

initial time to, respectively. 

     To characterize this solution, it is sufficient to consider 

both compatibility and equilibrium conditions at a time t :  

                                                                                     (11) 

                                                                                     (12)   

    Following Trost s (1967) approach, by means of (7)-(12), 

the following equation is immediately obtained:  

                                                                                                  (13)  

   By introducing the stiffness ratio 

 

, that characterizes the 

composite section: 

                                                                                                  (14)  

coc

oc
oc ItE

tM
t

)(

)(
)(

ss

os
os IE

tM
t

)(
)(

cadjfceffcadjc

oc

cadjc

c
oc EEEI

tM

EI

tM
t

11)()(
)(

ss

s
s IE

tM
t

)(
)(

)()()()()()( osssrcrocc tttttt

)]()([)()()()( osssrcrocc tMtMtMtMtMtM

),()()],(),(
)(

[ 0000
0 tttMtttt

JE

JEJtE
M c

ss

sscc
cr

sscoc

ss

JEJtE

JE

)(

60

 
(60-76) 



                            
Tikrit Journal of Eng. Sciences\Vol.12\No.3\August 2005 

Eq.(13) can be stated in the following form:  

                                                                                                  (15)  

     Furthermore, by setting c(t)- c(to)= cr(t) in (6), it is 

evident that in the absence of inelastic strain the following is 

obtained:  

                                                                                                  (16) 

     By comparing (15) and (16), it is clear that the stress 

evolution in the composite beam for the creep problem is the 

same as for a problem of pure relaxation [ c(t)- c(to) =0] for  a 

homogeneous concrete structure where the creep coefficient is 

assumed to be:   

                                                                                                  (17)  

     Then, it is possible to compute c(t,to)= (t,to), where  is 

the relaxation function obtained by using 

   

as the creep 

coefficient. Next, by directly using (2) and (8), it is possible to 

compute the parameters  and = M of the actual problem. Eq.(5 

) cannot be used in this case because the actual problem is not a 

relaxation problem and therefore the equality (4) is not satisfied. 

     In the hypotheses of null connection, a few additional 

dificulties with respect to  a homogeneous structure are 

introduced. By observing (15) it is evident that varying the 

coefficient , in any case, results in solutions that respect the 

equilibrium and compatibility conditions. By adopting the EM or 
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the MS method or using the hypothesis that strain in the concrete 

slab follows (4), the actual response that is strickly related to the 

characteristics of steel beams is disregarded. Only by following 

the proposed approach, it is possible to evaluate correctly the 

behavior of the composite beam without connection. 

     Obviously, the method becomes approximate in the 

presence of an elastic or rigid connection. For rigid connections, 

in particular, 

 

is not constant in the section but varies along the 

fiber following the law[2]:  

                                                                                                  (18)  

where y= coordinate  referred to central fiber; h= thickness of the 

concrete slab; M and N = aging coefficients of the section 

due to the same forces. 

     The problem appears more complicated for deformable 

connections, since, in general, we cannot work in a cross section, 

and so M and N are related to the overall beam respons. 

However, these variations along the beam are limited (in general) 

and an approximate treatment is still possible. 

     To understand the properties of the solution provided by 

the proposed  values reference is made to the composite beam 

theory developed by Newmark et al (1951), which in the 

presence of deformable connections gives good results if 

compared with  the experimental response (Wright 1990)[8]. For 

this beam model (Fig.2), the assumption that the slip-shear flow 

law is linear and elastic is obviously a simplification since the 
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slip develops only when bond and friction strengths are exceeded 

and the connectors are activated. On the other hand, this is the 

more simple approach acceptable for this type of beam. 

    Afterwards, a connection rigidity K(x) constant along the 

beam is assumed since  is not influenced practically by this 

parameter. Therefore, the solution determined without 

connection can be interpreted as a limit condition when K 0. It 

is also easy to observe that from both a numerical and theoretical 

viewpoint, It is assumed that  = M and simultaneously N = M, 

by adopting the  values determined without connection. 

     The aging coefficient N is instead characterized by strong 

variations. In particular, the asymptotic behavior for N occurs 

when the initial normal force is almost coincident with the final 

normal force and the superposition integral area is different from 

zero. In this case, in Eq. (2) the first member is different from 

zero, but at the second member the quantity c(t) - c(to) vanishes 

and therefore (t,to) (t,to) and (t,to) aim at infinite [see Eq. 

(8)]. 

     To use the AAEM method with the same simplicity as for 

the EM or MS methods, it is important to provide a simple 

relation in order to calculate the  coefficient. 

     In particular, it is important that the value of  = c(t,t ) = 

c

 

, linked with the long term solution, is determined. To this 

aim , with references to the CEB Model Code 90, an exact 

solution of c

 

(continum line of Fig.3) is presented together with 

an extension of the approximate expression given by Lacidogna 

(1993)[7], in which the aging coefficient was determined under 
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the assumption that the strain satisfies the relation (4) and the 

structure is homogeneous. 

     By using the continuum lines of Fig.3, it is possible to 

perform a linear interpolation to determine c

 

values. By using 

the Lacidogna approach[7], an expression for  is suggested:  

                                                                                                  (19)  

where n = corrective coefficient calibrated on the fictitious 

thickness ho=2Ac/u (in cm) (Ac is the area of the concrete section 

while u represents the perimeter in contact with the atmosphere), 

the relative humidity (RH) (%) , the characteristic strength of 

concrete fck (MPa), and the coefficient 

 

are needed. The 

coefficient n is calculated as summation of Lacidogna s (1993) 

term nL and the corrective term nc. The values of nL and nc are 

defined as:   

                                                                                                  (20) 

with: 

                                                                                                (21a)                                
               

                                                                                                (21b)                                                                            

                                                                                                (21c)  

and                                                                                                                       

              (21d) 
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These equations provide accurate results when 5 

 
ho 

 
160 cm, 

50%

 
RH 

 
80% and 3 

 
to 

 
200 days and imply 5% maximum 

error and 1% medium error. In Fig. 3, a comparison between the 

exact and the approximate (dotted line) c

 

values is reported 

also. Even though the  values obtained by (19) encompass a 

maximum error of 5%, the beam responses obtained by these 

previous approximate or exact  values are practically coincident.   

VALUES FOR RELAXATION PROBLEMS (IMPOSED 

DISTORTION) 

     The condition of imposed flexural distortion, i.e., the 

relaxation problem, is important to evaluate the stress state in a 

statically indeterminate composite beam with constant mechanics 

characteristics subjected to a settlement of the supports. In this 

case it is possible to set:  

                                                                                                  (22)  

to evaluate the effect of an imposed curvature, o, constant in 

time. By means of (10a ) and (22), the following is obtained:   

                                                                                                 (23)  

     As a result, it is evident that the concrete beam is subjected 

to an effect of pure relaxation that does not depend on the steel 

beam. This allows affirmation of the fact that the  coefficient 

determined by means of the proposed approach is equal to that of 
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homogeneous structures subjected to a constant strain and vice 

versa. 

     Analogous results are obtained by assuming rigid 

connections, since even in this case the strain law (4) adopted for 

the determination of the  coefficient for homogeneous structures 

is exactly respected with reference to concrete, i.e., c is constant 

in time in accordance with the  theorm of the linear 

viscoelasticity.  

     For a practical application, 

 

values, denoted here as r

 

, 

can be easily found by using (21d ) setting  = 1.  

 

VALUES FOR SHRINKAGE PROBLEMS  

     To evaluate slab shrinkage effects it should be observed 

that the laws of shrinkage evolution in time, proposed by actual 

codes, are not affine with the creep laws in general (if shrinkage 

is affine to creep, 

 

shrinkage values can be calculated as in the 

case of constant load, by assuming s = c). In this case, however, 

a numerical analysis for a composite beam without connections 

can be performed. Clearly, since the solution without connections 

is characterized by purely deformative effects of the slab, the  

values have to be determined for a beam with elastic connection 

in the limit condition of K 0. It is underlined that for shrinkage 

problem, when K 0, in general M is not equal to N; they are 

equal when the steel beam stiffness is low compared to the 

concrete stiffness.         

Also for the shrinkage problem, by using CEB Model Code 

90, an approximate expression for the s(t ,to)= s

 

coefficient is 
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proposed in this work to evaluate the long-term effects. For this 

model the significant parameters are the initial time load (at to), 

the RH, the characteristic strength of concrete fck, and the 

fictitious thickness of the slab ho. The stiffness of the steel beam 

or concrete slab does not influence the response practically. The 

 

values, determined with reference to a section in which M = N, 

i.e., for a small stiffness of the steel beam, s = s(3.104,to) 

becomes    

                                                                                                                            

                                              (24)       

Using the same limits of application, as for c ,for  s values 

the average percentage error and the maximum absolute error are 

about 1.44% and 3.3%, respectively. Fig.4 shows a comparison 

between numerical (continuum line) and the approximate (dotted 

line) s  values.  

Method Application 

    As an application example, the statically determinate beam of 

Fig.5 is considered. It is subjected to a uniform load or to the 

effect of the shrinkage of the slab. For this beam, a comparison 

can be made between the proposed  method [or AAEM method] 

and the numerical response obtained by [Amadio and 

Fragiacomo (1993a)][3] which were obtained by a finite element 
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model incorporating a general law of viscosity to describe the 

response of such structure under the long term effects. . 

The comparison is made for the section of Fig.5.  By varying the 

rigidity K in the connection (the current rigidities are generally 

included between 104-106 N/cm2), hypothesizing a relative 

humidity to 55% and a concrete with mean compressive strength 

fcm=3800 N/cm2.  

     For the uniform load condition, taking to=10 days, 

Figs.6,7,8 and 9 show the ratios of the 

 

deflection, the bending 

moment Mc

 

of the concrete, the bending moment Ms of the 

steel, and the normal force Nc in the mid-span cross section 

after 100 year (which can be virtually taken as infinite time) 

respectively, as well as the corresponding initial elastic values o, 

Mco, Mso and Nco. 

     If the figures are examined, it can be seen that even in such 

a simple scheme the correct solution obtained numerically [3] is 

close to the result that is obtained by using the proposed 

 

method.   

Figures 10,11,12 and 13 show the effects on the 

deformation  and stress state of the beam caused by shrinkage in 

the slab, if to=10 days and RH=75% are taken. The y-coordinate 

containes the 

 

/ cr the deflection in the mid-span at infinitive 

time, and the Mc /Mcr, Ms /Msr, Nc /Ncr ratios between the 

bending moment values and the normal force at infinite time with 

the respective cross section strength values.  

     In this case it can be seen how the proposed method are in 

general supplies a reasonable solution.  
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    From a parametric analysis carried out, it was able to 

confirm that even for more important sections (bridge cross 

sections, for example) the considerations set out above remain 

valid. 

     From the examples described, it can be seen how the 

proposed formulation may be extremely useful to the designer for 

the study of statically determinate structures, especially when 

they are of a certain importance and therefore require accurate 

assessment of the creep response.    

CONCLUSIONS 

     The simplified method described in this work, which 

depends on the age-adjusted effective modulus, presents a simple 

solution of viscous problems in steel-concrete composite beams 

with rigid or deformable connections when concrete can be 

considered uncracked. The theoretical characterization of the 

proposed 

 

values and their determination by means of simplified 

expressions permits, in fact, a simple use for the designer. 

     The proposed approach used in the presence of rigid 

connection and a constant cross section allows both a correct 

interpretation of the viscous problem and a solution characterized 

by a high precision and the same difficulties as for the EM 

method. The comparison with the solutions obtained by a 

numerical method [3] allows emphasis on the advantage of the 

proposed approach, in particular for shrinkage problem.    
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NOTATION  

The following notation are used in this paper  

A= beam cross section area; 

E= Young s modulus; 

I= moment of inertia; 

L= length of the beam; 

M= Bending moment force; 

N= normal force; 

n= modulus ratio; 

R= relaxation function; 

S= shear force in concrete; 

t, = time; 

= vertical deflection;  

= beam curvature;  

, = stress and strain;  

, = creep function and creep coefficient; and 

c, r, s = aging coefficient for creep, relaxation, and shrinkage 

problems. 

Subscripts  

c = concrete; 

s = steel; 

o = initial time;  

 = infinite time.  
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Fig.9  Response in Terms of Normal 
Force in the Slab  at Applied Load
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