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ABSTRACT

A theoretical analysis based on the numerical solution of
the beam impact integral equation is carried out to determine the
impact force and deflection time histories, the strain energy
absorbed by the beams and the maximum bending moment.
Effect of beam boundary conditions on impact response of beam
is also discussed. The theoretical results obtained in the present
analysis are compared with experimental and theoretical works
previously done. A good agreement is found between theoretical
and experimental results. This indicates that the impact resistance
of relatively large beams may be predicted by using the
theoretical approach based on equation of undamped beam
vibration. All the derivations required to predict the effect of
boundary conditions are performed for both forced and free
vibrations. For the same falling mass and the same applied
kinetic energy (height of drop) for all cases, the maximum central
deflection and the maximum impact force are affected by the

boundary conditions of the beams

(78-102)



(79-102)

Tikrit Journal of Eng. Sciences/Vol.13/N0.3/October 2006 79

KEYWORDS
Beam, Boundary Conditions, Deflection — Time Histories, Force

— Time Histories, Free and Forced Vibration, Impact, Striker.

LIST OF NOTATION

a Relative approach of striking bodies.
E Young modulus of elasticity.

F Impact force.

I Moment of inertia.

k Hertz (Deformation) constant.

K E Kinetic energy.

L Span.

m Mass per unit length of the beam.

my,  Mass of the beam.

ms  Mass of the striker..

t Time.

U Strain energy.

V,  Velocity of striker at instant of impact.
Y Deflection.

Yy  Central deflection of the beam.

Ys  Displacement of the striker.

T Impact duration.

® Angular frequency
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INTRODUCTION

Impact loads may be applied to many structures which
have been designed only to resist their own dead loads in
addition to the conventional static live loads. If the probability of
impact loading is very small, it may be uneconomical to design
against impact loads, but if the structure is subjected to impact
the results could be very serious. Under these circumstances, it is
useful to check the impact resistance of structures which have
been designed to resist static loads. Some structures such as
shelters and buildings of nuclear plant must be designed to resist
impact loads. Missile impact, fragments impact, ship collision,
vehicle impact with structures, and falling masses in industrial
buildings are some examples of impact.

Local response and overall (structural) response are
usually associated with impact. The structural responses are in
the form of flexural and shear deformations, and the structure is
to be dynamically analyzed under the applied force-time history.
The effect of impact loading on concrete structures has received a
considerable amount of attention of many researchers -8l

The objective of this study is to present a theoretical
analysis based on the numerical solution of the beam impact
integral equation. Based on equation of undamped beam
vibration, the effect of boundary conditions on the beam response
to impact force is also presented for both stages of vibration

(forced and free vibrations).
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The impact force and deflection-time histories, the strain energy
absorbed by the beam, and the bending moment are all

determined.

IMPACT INTEGRAL EQUATION
The structural dynamic response of structures subjected to impact
can be determined if the impact force time history is known.
Therefore the main purpose of the impact analysis is to determine
the impact force-time history F(t), deflection Y (x, t). A beam is
struck transversely by a mass (ms) having a spherical surface at
the point of contact and striking velocity (V,), figure (1).
The formulation of this problem can be effected only under
certain assumptions:-
a) All assumptions of the classical theory of beam
are applicable.

b)  Hertz law of impact is valid !, hence

Where:
F (t): the impact force at any time (t) within the duration of
impact.

a (t): the relative approach of striking bodies. Figure (1)
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k . the hertz (deformation) constant which depends on the
elastic mechanicalproperties of two bodies and on the shape of

the two bodies at the contact zone 1%

Ve Striker
At t - o m

F
Mb ) o Beam
thicknhess
% b
At time (t)
t
afth. Ys”‘ me

Fig.( 1) Displacement at Impact Zone

The deformation equation is:-
at)=Y,0-Y,0) e @
Where:

Ys(t): The displacement of the rigid striker under action of the

force F (t).

Yb(t): The deflection of the beam at the point of contact.

Here Ys(t) is given by [1112.13,14,15]

1t T

Ys(t):Vo't‘@(f) dr([) F(z) dz. = e (3)



(83-102)

Tikrit Journal of Eng. Sciences/Vol.13/N0.3/October 2006

Where:

ms: mass of the striker.

V. initial velocity of striker ( impact velocity ).

Substituting equation (3) into equation (2) and making use of
equation (1)

(@Jyg =V,. t—%i drz F(F) dz-Y () - (4)
The well-known equation of undamped beam vibration is 1% 14 16

17]

4
EI%+m.Y:P(X,t) ............ (5)

Where:
El: the rigidity of the beam.

Y : the displacement of the beam which is a function of the time (t)

and position (x)

m : the beam mass per unit length.

P (x, t): the external load intensity.

This equation can be solved for Y (x,t), the beam deflection as a
function of both time and position.

Free Vibration

For the free beam vibration, P (x,t) = o, the beam displacement

Yb(x,t) can be represented by:-

Yo (x, 1) = > Y, = > XM e (6)
i=1 i=1

Where:
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X;(x): The characteristic shape function.

Ti (t): The time function.

The substitution of this assumed displacement in equation (5)

gives:-

EL XTI L
m .Xi Ti e T (7)

Where:
o Is an arbitrary constant for (a)i > 0) the shape and time function

WI” be [11, 14, 15, 17].

Xi (X) = Ajsin a; X + Bjcos a; x + Cj sinh a; x + D; cosh a; x
Ti (t) = Ej sin ot + Fj cos wjt

Where:

So the displacement Yi (x,t) for ith mode will be

Yi (x,t) = (Ajsin a; X + Bjcos a; x + C; sinh a; x + D;j cosh a; x ) (E;
sin ot + Fj cos w;t)

The constant Aj, Bj, C; and D; are determined from the beam
boundary conditions, while E;, F;i are determined from the beam

initial conditions.
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Simply Supported Beam

Boundary conditions

85

oY ) L
Yi (x,t) =0 and —ézo at x=o,L ) |
0 X
Therefore:
B,= Ci =Di=o0
_i%x® [E iz
Ai sin ﬂ ------------ 9)
Initial conditions
0
Vxo=H L (5, o=
Where:
f1 (X): the initial function of displacement of beam.
f, (X): the initial function of velocity of beam.
X 177 X t I X
Yb(x,t) = izlYi 2 sin—= | Cosat] fl( )sdex
: (10)
+isina}tj f,(x )smﬂdx
o ' 0 L
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Beam With Fixed Ends

Boundary conditions

oYy,
Y.(xt)= d 2= =
(x,t)=0 an 5y =0 atx o, L

Therefore:

(i+12P 4 [E
-

a - (i +]I7_/2)7t

cosh aiL —CO0S aiL
%~ Sinh L —sin a;L

Cantilever Beam

Boundary conditions

_ oy _
Y;(x,t)=0 and 35 =0

2
o0%Y; 3
—2' =0 and a—g =0
0 X 0 X
Therefore:

_(i-v2f 7% [ET

a.:(i—+2)7f

~X(X) = (cosh & X — oS a

at

at

-X—Oli

\ 4

(sinh 8 X—sin &, x)) (12)

X;(x) = [cosha; x —cosa;x — a;(sinh & x —sin ax) --------- (14)
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cosh ch L + cos ch L

%~ sinh al+sinal

Fixed — Hinged Beam

Boundary conditions

Y:(x,t)= aYi — t X =
i(Xi)_Ol W_O at Xx=0 y L .
2
prav
Yi(X,t):O,—lelzo atX:L
OX
Therefore:
- 2 :
I :W E , a: :W ____________ (15)
L m | L
X;(x) = cosha,x —cos ax —as(sinh ax —sin ax| --------- (16)

cosh aiL —CO0S aiL
%~ Sinn a:L —sin al

For the last three cases (fixed — fixed, cantilever, fixed-hinged)
beams, the determining of the response of an elastic body to

initial condition involves the evaluation of integrals of the forms
L L

| fl(x) X;() dx f2(x) X;(x) dx

0 0

Direct integration to such expressions become difficult when the
normal functions (Xi(x)) are complicated. Beams other than
simply involve hyperbolic function which usually necessitate

numerical integration.
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However an alternative approach is found to be advantageous,
especially when the initial condition is caused by a concentrated
force Po (suddenly removed at time t=0) therefore the deflection

of last three cases is 19

3
P.L° o X X,
__0 "1 cosmr t 000 e
Y; (%, t) E] '21 cosa t (a7)

[ (ai L)4

Where:

Xii: Xievaluated at x=x1 where P, is acting.

Forced Vibration

For the case of forced vibration, the (L.H.S.) of equation
(5) is similar to that for free vibration but the external dynamic
load intensity (P (x, t)) exists in the (R.H.S.) of the same
equation.

Lagrange’s equation may be used to solve the forced

vibration equation. Let the displacement Yy, (X,t) is given by:
Q0
k0= 2.%09.Z(1)

where X; (x) is the characteristic shape function of the beam for
ith mode which depends on the beam end conditions, Zi(t) is the
modal amplitude which can be obtained by using the Lagrange’s
equation 1418171 For undamped vibration, the Lagrange’s

equation is in the following form:-

d [GK.EJ_ oKE oU _oPe

dt az'i 0z, 3Z; L,
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Where:

K.E: the kinetic energy

U: the strain energy

Pe: the potential of external forces.

If (m) is the beam mass per unit length then:-
:— Zm ZI)ZL[)X (X)dx
_ n2
_EiélEl (Zi)zé X2(x) dx
pe = TPt £Z. X.(9 | d
e = ’ . X.
J; X (iél i I(x)j X

L 00
Pe = J)f(t)P1 (x) [iélzi Xi(X)J dx

Where f (t) is the load-time function and P; (X) is the load
distribution along the span (L).
Using equation (18 and 19)

.. (gP
Zi + o | li=—F—— (20)
méx

Where o, is the i mode natural frequency, and

L
El éxi"z(x) dx

m I(j;Xiz(x) dx

For a point load acting at distance (i) from the support, the solution is

given by 145:-



90

Tikrit Journal of Eng. Sciences/Vol.13/N0.3/October 2006

Y (xt)= 5 X:(x)- X x) iF(f)sin(a}l(t—f)df ------- (22)
)

IJ;X-Z(x dx

=1
m i

S

The displacement of the beam can be determined using equation

(22) and substituting in equation (4)

2/3 . o
(Ej :Vo.t—m—lsgdrlF(z_') dz -5
Xi[X)-ZXi(*) ) s - ) o

ma}l([)xi (x) dx

- (23)

This equation can not be-solved in a closed form, but it may be
solved numerically to give the impact force-time history. The
detailed numerical solution for simply supported beam was given
in ref. (4), and is developed in this research for other types of
beams.

The following quantities may then be computed.

1-  The displacement (equation 22).

2- The model bending moment,
2
o-Y.
Mi(x,t) =—El —2'
0 X

3-  The model kinetic energy, KE(t)

X2 [ip(f) coslojt - df]z ---------- (24)

ZmEXiz(x)dx
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4- The model strain energy Ui (t)

2 2
- (LRl sinlfe 1) o] e @)
2m J,Xi (x)dx

The analysis given above covers beams having any end

conditions.

Simply Supported Beam

To study impact of mid span (7 = L/2)

2 iz X .
X; = \/E sin == (i=135,...)
L
2 _
(in (x)dx=1
The central bending moment is:

Ly 2lay ot
M(i’t]_7i:1,23,5,..(j) FE)sin{e ) o (26)

Where: o; is the fundamental natural frequency and equal to

-2
@/
Beams Have Other End Conditions
a) Fixed —fixed

b) Cantilever

c) Fixed-hinge

For the three cases above

L
X;(x) is the same in the free vibration, and éXi(x) dx=1L 07

For these three cases the bending moment M (x,t) is equal to:
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Where

Qb = (Zai2 - Zai aizj(sinh2 X+ cosh? a x)

+8 aj, aiz(cosaix s.inai x)+(2ai2—2ai2ai2j

(coshaix cosaix+sin & X sinh aix)

- (Zai2 + 2ai2 aiz)(cos a X cosh 8 X~ sin 8 X sinh ch x)
— 4. a-2 [sin a. X cosh 8 X+ cosh a X sinh ch x) + [Zai2 + Zai a-z)

i | |
2aix—sin2 aix)+4ozi ai2

(COS

(cos a X sinh aix—sin 8 X cosh ch x)

As mentioned before, the above equation may be solved
numerically. A computer programme [ is written to determine

the impact force and deflection time histories and:

1- Central bending moment (M[gtn

2- Kinetic energy (K.E); (t)

3- The absorbed strain energy U; (t).

a) To check the accuracy of the developed programme solution,
Fig.(1) shows the force — time history of a simply supported

beam subjected to central impact load which compared with

(92-103)
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solution given by Eringen %1 the following parameters were
used:
ms: Striker mass = .03334 kg.
mb: Beam mass = 0.1222 kg.
Vo: Impact velocity of striker = 1 m/sec
K: Deformation constant = 13.75E 6 kg/m -°
w1 531 rad/sec
b) For the present search the input data in the computer
programme are:™
ms: Striker mass = 10 kg.
mb: Beam mass = 20 Kkg.
Vo: Impact velocity of striker = 2 m/sec
K: Deformation constant = 24.7 x 10® N/m!-°
N: Number of excited modes = 6
L: length of Beam =0.5m
E: Yong modulus of elasticity = 25.6 x 10° N/m?
I: Moment of inertia = 3.90625 x 10" m*

CONCLUSIONS

The theoretical results obtained in the present analysis are
compared with experimental and theoretical works previously
done. A good agreement is found between theoretical and
experimental results Fig. (1). this indicates that the impact
resistance of relatively large beams may be predicted by using

the theoretical approach based on equation of undamped beam

93
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vibration. All the derivations required to predict the effects of
boundary conditions are performed for both forced and free
vibrations. The impact force and deflection-time histories Figures
(2), (3), (4) and (5). The strain energy absorbed by the beam
Figure (9) and the bending moment Figure (8) are all determined.

Figures (6) and (7) show that for the same falling mass and
the same applied kinetic energy (height of drop) for all cases, the
maximum central deflection and the maximum impact force are
affected by the boundary conditions of the beams. The maximum
central impact force for fixed —fixed beam is higher than other
cases by about (27%) for simply supported beam, (16%) for
fixed-hinge and (4%) for square cantilever beam, the maximum
central deflection for cantilever beam is smaller than other cases
by about (67%) for simply supported beam, (38%) for fixed-

hinge beam and (24%) for fixed —fixed beam.
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Fig. (2) Typical Theoretical Impact Force — Time History for Simply
Supported Beam.
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Fig. (3) Typical Theoretical Impact Deflection and Force -
Time ,Histories for Simply Supported Beam.
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Fig. (3) Typical Theoretical Impact Deflection and Force —
Time Histories for Fixed - Fixed Beam.
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Fig. (4) Typical Theoretical Impact Deflection and Force —
Time Histories for Fixed - Free Beam.
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Fig. (5) Typical Theoretical Impact Deflection and Force —
Time ,Histories for Fixed - Hinge Beam.
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Fig. (6) Typical Theoretical Impact Force — Time History for
Different End Condition.
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——————— Simply Supported Beam.
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-------- Cantilever Beam.
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Fig. (7) Typical Theoretical Impact Deflection— Time History

for Different End Condition.
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Fig. (8) Typical Theoretical Impact Moment— Time History
for Different End Condition.
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Fig. (9) Typical Theoretical Impact Strain Energy — Time
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Simply Supported Beam.
Fixed — Fixed Beam.
Cantilever Beam.

Fixed — Hinged Beam.

History for Different End Condition.
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