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ABSTRACT 

A theoretical analysis based on the numerical solution of 

the beam impact integral equation is carried out to determine the 

impact force and deflection time histories, the strain energy 

absorbed by the beams and the maximum bending moment. 

Effect of beam boundary conditions on impact response of beam 

is also discussed. The theoretical results obtained in the present 

analysis are compared with experimental and theoretical works 

previously done. A good agreement is found between theoretical 

and experimental results. This indicates that the impact resistance 

of relatively large beams may be predicted by using the 

theoretical approach based on equation of undamped beam 

vibration. All the derivations required to predict the effect of 

boundary conditions are performed for both forced and free 

vibrations. For the same falling mass and the same applied 

kinetic energy (height of drop) for all cases, the maximum central 

deflection and the maximum impact force are affected by the 

boundary conditions of the beams  
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LIST OF NOTATION 

a  Relative approach of striking bodies. 

E  Young modulus of elasticity. 

F  Impact force. 

I  Moment of inertia. 

k  Hertz (Deformation) constant. 

K E Kinetic energy. 

L  Span.  

m  Mass per unit length of the beam. 

mb   Mass of the beam. 

ms  Mass of the striker.. 

t  Time.  

U  Strain energy. 

Vo   Velocity of striker at instant of impact. 

Y  Deflection. 

Yb  Central deflection of the beam. 

Ys  Displacement of the striker. 

τ  Impact duration. 

ω  Angular frequency 
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INTRODUCTION 

Impact loads may be applied to many structures which 

have been designed only to resist their own dead loads in 

addition to the conventional static live loads. If the probability of 

impact loading is very small, it may be uneconomical to design 

against impact loads, but if the structure is subjected to impact 

the results could be very serious. Under these circumstances, it is 

useful to check the impact resistance of structures which have 

been designed to resist static loads. Some structures such as 

shelters and buildings of nuclear plant must be designed to resist 

impact loads. Missile impact, fragments impact, ship collision, 

vehicle impact with structures, and falling masses in industrial 

buildings are some examples of impact. 

Local response and overall (structural) response are 

usually associated with impact. The structural responses are in 

the form of flexural and shear deformations, and the structure is 

to be dynamically analyzed under the applied force-time history. 

The effect of impact loading on concrete structures has received a 

considerable amount of attention of many researchers [1-8]. 

The objective of this study is to present a theoretical 

analysis based on the numerical solution of the beam impact 

integral equation. Based on equation of undamped beam 

vibration, the effect of boundary conditions on the beam response 

to impact force is also presented for both stages of vibration 

(forced and free vibrations). 
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The impact force and deflection-time histories, the strain energy 

absorbed by the beam, and the bending moment are all 

determined.  

 

IMPACT INTEGRAL EQUATION 

The structural dynamic response of structures subjected to impact 

can be determined if the impact force time history is known. 

Therefore the main purpose of the impact analysis is to determine 

the impact force-time history F(t), deflection Y (x, t). A beam is 

struck transversely by a mass (ms) having a spherical surface at 

the point of contact and striking velocity (Vo), figure (1). 

The formulation of this problem can be effected only under 

certain assumptions:- 

a) All assumptions of the classical theory of beam 

are applicable. 

b) Hertz law of impact is valid [9], hence 

c)  

( ) ( )( ) 23/ta.ktF =            ------------ (1) 

 

Where: 

F (t): the impact force at any time (t) within the duration of 

impact. 

a (t): the relative approach of striking bodies. Figure (1) 
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k    : the hertz (deformation) constant which depends on the 

elastic mechanicalproperties of two bodies and on the shape of 

the two bodies at the contact  zone [10]. 

                                                                               

 

 

 

 

 

 

 

 

 

Fig.( 1) Displacement at Impact Zone 

 

The deformation equation is:- 

( ) ( ) ( )tYtYta bs −=                     ------------ (2) 

Where: 

( )t
s

Y : The displacement of the rigid striker under action of the 

force F (t). 

( )t
b

Y : The deflection of the beam at the point of contact. 

Here ( )tsY  is given by [11, 12, 13, 14, 15] 

( ) ( ) 

 dF

o

d
t

oms
t

o
Vt

s
Y −=

1
.        ------------ (3) 

 

(82-102) 82 



Tikrit Journal of Eng. Sciences/Vol.13/No.3/October  2006 

 

Where: 

ms: mass of the striker.  

Vo: initial velocity of striker ( impact velocity ). 

Substituting equation (3) into equation (2) and making use of 

equation (1) 

( )
( ) ( )t

b
YdF

o

d
t

oms
t

o
V

k

tF
−−=













1
.

3/2
       ------------ (4)  

The well-known equation of undamped beam vibration is [11, 14, 16, 

17,] 

( )tx,.
4

4

PYm
x

Y
EI =+



               ------------ (5) 

Where: 

EI: the rigidity of the beam. 

Y : the displacement of the beam which is a function of the time (t) 

and position (x) 

m : the beam mass per unit length. 

P (x, t): the external load intensity. 

This equation can be solved for Y (x,t), the beam deflection as a 

function of both time and position.  

Free Vibration 

For the free beam vibration, P (x,t) = o, the beam displacement 

( )tx
b

Y ,   can be represented by:- 




=



=
==

1 1
)(.)(),(

i i
t

i
Tx

i
X

i
Ytx

b
Y                  ------------ (6) 

Where: 
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( )x
i

X : The characteristic shape function. 

( )t
i

T : The time function. 

The substitution of this assumed displacement in equation (5) 

gives:- 

 

2
. i

i

i

i

i

T

T

X

X

m

EI
+=


−=


           ------------ (7) 

 

Where: 

i
 : is an arbitrary constant for (

i
 > o) the shape and time function 

will be [11, 14, 15, 17]. 

Xi (x) = Ai sin ai x + Bicos ai x + Ci sinh ai x + Di cosh ai x 

Ti (t) = Ei sin ωi t + Fi cos ωi t 

Where: 

 

4
2

i EI
i

m
a


=           ------------ (8) 

 

So the displacement Yi (x,t) for ith mode will be 

Yi (x,t) = (Ai sin ai x + Bicos ai x + Ci sinh ai x + Di cosh ai x ) (Ei 

sin ωi t + Fi cos ωi t) 

The constant Ai, Bi, Ci and Di are determined from the beam 

boundary conditions, while Ei, Fi are determined from the beam 

initial conditions. 
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Simply Supported Beam 

Boundary conditions 

Yi (x,t) = o and  o
x

Y
=





2
i

2  
    at  x = o, L 

Therefore: 

B i = C i = D i = o 

L

i
i

a
m

EI

L

i
i


 == ,

2

22
 

( )
L

xi
i

Ax
i

X


sin=          ------------ (9) 

Initial conditions  

( ) ( ) ( )xf
oxx

y
xfox

i
Y

2,
),

1
, ( =




=  

Where: 

f1 (x): the initial function of displacement of beam.  

f2 (x): the initial function of velocity of beam. 

( ) ( )

( )






+











=
=



=
=

dx
L

xi
x

t

o

ft
i

i

dx
L

xi
x

t

o

ft
ii L

xi

Li
iYtx

b
Y











sin
2

sin
1

sin
1

cos
1

sin
2

1
,

(10) 

 

 

 

 

X 

L 
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Beam With Fixed Ends 

Boundary conditions 

( ) o
x

y
andotxY i

i =



=,   at x = o, L 

Therefore: 

( )
m

EI

L

i
i 2

2221 


+
=         ------------ (11) 

( )
L

i

i
a

21+
=  

( ) ( )






 −−−= x
i

ax
i

a
i

x
i

ax
i

axiX sinsinhcoscosh   (12) 

L
i

aL
i

a

L
i

aL
i

a

i sinsinh

coscosh

−

−
=  

Cantilever Beam 

Boundary conditions 

( ) otxiY =,  and  oxato
x

y
==




 

o
x

iY
=





2

2

 and Lxato
x

Y
==




3

3
 

Therefore: 

( )
m

EI

L

i
i 2

2221 


−
=              ------------ (13) 

( )
L

i
i

a
21−

=  

( ) ( )( x
i

ax
i

a
i

x
i

ax
i

axiX sinsinhcoscosh −−−=    ---------- (14) 

X 

L 

X 

L 
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L
i

aL
i

a

L
i

aL
i

a

i sinsinh

coscosh

+

+
=  

 

Fixed – Hinged Beam  

Boundary conditions 

( )

( ) Lxato
x

i
y

otxiY

oxato
Y
iY

otxiY

==



=

==



=

2

2

,,

,,

 

Therefore: 

( ) ( )
L

i
i

a
m

EI

L

i
i




41
,

2

2241 +
=

+
=       -----  ------- (15) 

( ) ( )x
i

ax
i

a
i

x
i

ax
i

axiX sinsinhcoscosh −−−=     --------- (16) 

L
i

aL
i

a

L
i

aL
i

a

i sinsinh

coscosh

−

−
=  

For the last three cases (fixed – fixed, cantilever, fixed-hinged) 

beams, the determining of the response of an elastic body to 

initial condition involves the evaluation of integrals of the forms 

( ) ( ) 
L

o

L

o

dxxXxfdxxXxf ii )(
2

,)(
1  

Direct integration to such expressions become difficult when the 

normal functions (Xi(x)) are complicated. Beams other than 

simply involve hyperbolic function which usually necessitate 

numerical integration. 

X 

L 

(87-102) 87 



Tikrit Journal of Eng. Sciences/Vol.13/No.3/October  2006 

 

However an alternative approach is found to be advantageous, 

especially when the initial condition is caused by a concentrated 

force Po (suddenly removed at time t=o) therefore the deflection 

of last three cases is [10]: 

( )
( )

t
i

L
i

a

i
X

i
X

iEI

L
o

P
txiY cos

4
1

1

3

, 


=
=         ------------ (17) 

Where: 

Xil: Xi evaluated at x=x1 where Po is acting. 

 

 Forced Vibration 

For the case of forced vibration, the (L.H.S.) of equation 

(5) is similar to that for free vibration but the external dynamic 

load intensity (P (x, t)) exists in the (R.H.S.) of the same 

equation. 

Lagrange’s equation may be used to solve the forced 

vibration equation. Let the displacement Yb (x,t) is given by: 

( ) ( )


=
=

1
.)(,

i
t

i
Zx

i
Xtx

b
Y  

where Xi (x) is the characteristic shape function of the beam for 

ith mode which depends on the beam end conditions, Zi(t) is the 

modal amplitude which can be obtained by using the Lagrange’s 

equation [14,16,17]. For undamped vibration, the Lagrange’s 

equation is in the following form:- 

i
Z

Pe

i
Z

U

i
Z

EK

i
Z

EK

dt

d




=




+




−

















 ..
            ------------ (18) 
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Where: 

K.E: the kinetic energy 

U: the strain energy 

Pe: the potential of external forces. 

If (m) is the beam mass per unit length then:- 

( ) ( )

( ) ( ) dxx
i

X
L

oi
Z

i
EIU

L

o
dxx

i
XiZ

i
mEK

22

12

1

22

12

1
.




=
=




=
= 

            

( )

( ) dx
i

x
i

X
i

ZxP
L

o
tfPe

dx
i

x
i

X
i

Z
L

o
xtPPe
































=
=




=
=

1
)()(

1

1
)(,

           ------------ (19) 

Where f (t) is the load-time function and P1 (x) is the load 

distribution along the span (L). 

Using equation (18 and 19) 

( ) ( ) ( )

( ) dxx
L

o i
Xm

L

o
dxx

i
XxPtf

i
Z

ii
Z




=+

2

12            ------------ (20) 

Where  ωi, is the ith mode natural frequency, and 

( )

( ) dx
L

o
x

i
Xm

dxx
L

o i
XEI

i


 

=
2

2
2              ------------ (21) 

For a point load acting at distance ( )x   from the support, the solution is 

given by [14]:- 
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( )
( ) ( )

( )

( ) ( )( tdtt
i

L

o
tF

i dxx
L

o i
X

i
m

x
i

Xx
i

X
tx

b
Y −



=



= 



sin
1 2

, ------- (22) 

The displacement of the beam can be determined using equation 

(22) and substituting in equation (4)  

( ) ( )

( )

( ) ( )( tdttWitF
L

o
dxx

i
X

i
m

x
i

Xx
i

X

i
dFd

s
m

t
o

V
K

F

t

o

o

t

o

−



 


=
−−=









sin
2

.

1
)(

1
.

32






  ---- (23) 

This equation can not be-solved in a closed form, but it may be 

solved numerically to give the impact force-time history. The 

detailed numerical solution for simply supported beam was given 

in ref. (4), and is developed in this research for other types of 

beams. 

The following quantities may then be computed. 

1- The displacement (equation 22). 

2- The model bending moment, 

( )
2

2

,
x

i
Y

EItx
i

M



−=  

3- The model kinetic energy, KE(t) 

     
( )

( )

( ) ( )( )
2

cos
22

2














 −



=
t

o
tdtt

i
tF

L

o
dxx

i
Xm

x
i

X
              ---------- (24) 
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4- The model strain energy Ui (t) 

     
( )

( )

( ) ( )( )
2

sin
22

2














 −



=
t

o
tdtt

i
tF

L

o
dxx

i
Xm

x
i

X
    ---------- (25) 

The analysis given above covers beams having any end 

conditions. 

 

Simply Supported Beam 

To study impact of mid span ( )2LX =  

( )

( ) =

==

L

o
dxx

i
X

i
L

xi

Li
X

12

,.....5,3,1sin
2 

 

The central bending moment is: 

( ) ( )( ) tdtt
i

tF
t

i

L
t

L
M −

=
= 







 





sin

0,..5,3,12
1

2
,

2
 ----------- (26) 

Where: ω1 is the fundamental natural frequency and equal to 

2i
i

   

Beams Have Other End Conditions  

a) Fixed –fixed 

b)  Cantilever 

c)  Fixed-hinge 

For the three cases above 

( )x
i

X  is the same in the free vibration, and ( ) Ldx
L

o
x

i
X =   [17] 

For these three cases the bending moment M (x,t) is equal to: 
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( ) ( )( ) tdtt
i

t

o
tF

i
b

Q
ib

m

EI
txM −



=

−
=  


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1

1
),( ---------- (27) 

 

Where 
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
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
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
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i
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i i

coshsinsinhcos

242sin2cos
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
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
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As mentioned before, the above equation may be solved 

numerically. A computer programme [1] is written to determine 

the impact force and deflection time histories and: 

1- Central bending moment 















t

L
M ,

2
 

2- Kinetic energy (K.E)i (t) 

3- The absorbed strain energy Ui (t). 

a) To check the accuracy of the developed programme solution, 

Fig.(1) shows the force – time history of a simply supported 

beam subjected to central impact load which compared with 
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solution given by Eringen [15] the following parameters were 

used: 

ms: Striker mass = .03334 kg. 

mb: Beam mass = 0.1222 kg. 

Vo: Impact velocity of striker = 1 m/sec 

K: Deformation constant = 13.75E 6 kg/m 1..5 

ω1:  531 rad/sec 

b) For the present search the  input data in the computer 

programme are:[1] 

ms: Striker mass = 10 kg. 

mb: Beam mass = 20 kg. 

Vo: Impact velocity of striker = 2 m/sec 

K: Deformation constant = 24.7 x 106 N/m 1..5 

N: Number of excited modes = 6 

L: length of Beam = 0.5 m 

E: Yong modulus of elasticity = 25.6 x 109 N/m2 

I: Moment of inertia = 3.90625 x 10-7 m4 

 

CONCLUSIONS 

      The theoretical results obtained in the present analysis are 

compared with experimental and theoretical works previously 

done. A good agreement is found between theoretical and 

experimental results Fig. (1). this indicates that the impact 

resistance of relatively large beams may be predicted by using 

the theoretical approach based on equation of undamped beam 

(93-102) 93 



Tikrit Journal of Eng. Sciences/Vol.13/No.3/October  2006 

 

vibration. All the derivations required to predict the effects of 

boundary conditions are performed for both forced and free 

vibrations. The impact force and deflection-time histories Figures 

(2), (3), (4) and (5). The strain energy absorbed by the beam 

Figure (9) and the bending moment Figure (8) are all determined. 

      Figures (6) and (7) show that for the same falling mass and 

the same applied kinetic energy (height of drop) for all cases, the 

maximum central deflection and the maximum impact force are 

affected by the boundary conditions of the beams. The maximum 

central impact force for fixed –fixed beam is higher than other 

cases by about (27%) for simply supported beam, (16%) for 

fixed-hinge and (4%) for square cantilever beam, the maximum 

central deflection for cantilever beam is smaller than other cases 

by about (67%) for simply supported beam, (38%) for fixed-

hinge beam and (24%)  for fixed –fixed beam. 
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Fig. (2) Typical Theoretical Impact Force – Time History for Simply 

Supported Beam. 

 

-4

-2

0

2

4

6

8

0 3 6 9

Time (ms)

 
Fig. (3) Typical Theoretical Impact Deflection and Force – 

Time ,Histories for Simply Supported Beam. 
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 Fig. (3) Typical Theoretical Impact Deflection and Force – 

Time  Histories for Fixed - Fixed Beam. 
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Fig. (4) Typical Theoretical Impact Deflection and Force – 

Time Histories for Fixed - Free Beam. 
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Fig. (5) Typical Theoretical Impact Deflection and Force – 

Time ,Histories for Fixed - Hinge Beam. 
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Fig. (6) Typical Theoretical Impact Force – Time History for 

Different End  Condition.   
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                    Simply Supported Beam. 

                    Fixed – Fixed Beam. 

                    Cantilever Beam. 

                    Fixed – Hinged Beam. 

Fig. (7) Typical Theoretical Impact Deflection– Time History 

for Different End Condition. 

0

4

8

12

16

20

0 3 6 9 12

Time (ms)

 
Fig. (8) Typical Theoretical Impact Moment– Time History 

for Different End Condition.   
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Fig. (9) Typical Theoretical Impact Strain Energy – Time 

History for Different End Condition.   
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  اجهادات الصدم في العتباتالحدية على  طتأثير الشرو 
 

 د. اياد كاظم صيهود الحجامي 
 الجامعة التكنولوجية -قسم هندسة البناء والانشاءات 

 
 لخلاصةا

يشمل ه ذا البح ث دراس ة نظري ة ح ول تأثيرالش روي الحدي ة عل ى العتب ات تح ت         
اجراء تحل يلات نظري ة لت أثير احم ال  .لقد تم خلال هذا البحثتأثير الاحمال الصدمية 

دم التكاملي   ة ص   الص   دم عل   ى العتب   ات لمختل   د الش   روي الحدي   ة وذال   ك بح   ل معادل   ة ال
للعت    ب  الطرع العددي  ة وبأس  تعمال الحاس    الال  ي, كم  ا ت  م حس  ال الدال  ة الزمني  ة للق  وة 
عت    المس  لطة عل  ى العتب  ة والأود المرك  زي الن  اتج وطاق  ة الأجه  اد الممتص  ة م  ن قب  ل ال

م ع الاخ ذ بنظرالاعتب ارالاهتزاز المقي د والح ر.  الص دموكذالك مق دار الع زوم خ لال ات رة 
.  السابقة هرت الدراسة تقارباً بين نتائج المستحصلة عند مقارنتها مع النتائج العمليةظا

 لنفس الكتلةِ السَاقِطةِ ونفس الطاق ةِ الحركية ةِ )إرتف اع الهب ويِ( لك  لة  كما اظهرت النتائج 
ب  أن الق  وة الص  دمية والهط  ول عن  د منتص  د العتب  ة يت  أثر  الت  ي تم  ت دراس  تها الح  الات

 بالشروي الحدية للعتبات. 
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