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Abstract: This study introduces an adaptive 
artificial neural network (ANN)-based control 
system to enhance the efficiency of stand-alone 
photovoltaic (PV) systems under dynamic 
environmental conditions. Traditional maximum 
power point tracking (MPPT) methods, such as 
perturb and observe (P&O) and incremental 
conductance (INC), are hindered by slow 
convergence and oscillations. The proposed 
approach utilizes a hybrid ANN architecture with 
hyperbolic tangent (tanh) and rectified linear unit 
(ReLU) activation functions in a 6-3 neuron hidden 
layer structure, enabling real-time prediction of the 
optimal voltage (V_mpp). Integrated with a PID-
controlled DC-DC boost converter, the system 
seamlessly transitions between the solar harvesting, 
battery charging, and load supply modes. Trained on 
10,000 environmental samples (irradiance: 150–
1000 W/m² and temperature: 25–50°C) using the 
Levenberg-Marquardt algorithm, the ANN achieved 
99.2% tracking accuracy with a mean squared error 

(MSE) of 1.73×10⁻⁵ in 200 epochs. 
MATLAB/Simulink simulations demonstrated 
superior performance, surpassing P&O by 4.1% and 
INC by 3.2%, while maintaining a voltage ripple 
below 1.5%. Key innovations include the hybrid 
ANN design that mitigates saturation effects, 
adaptive PID tuning for minimal oscillations, and a 
three-mode converter that ensures a stable 24 V load 
voltage during irradiance fluctuations. This work 
underscores the potential of machine learning in 
advancing renewable energy systems, offering a 
computationally efficient and hardware-ready 
solution for off-grid applications with enhanced 
reliability and precision. 
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إدارة الطاقة باستخدام أنظمة الطاقة الشمسية الهجينة: دراسة كفاءتها في إنتاج الكهرباء  
 والحرارة

 4، خالد الصمادي 3لهاسوبرافا رانجان ، 2، تقي الدين الصمادي1الحسبانياسين 
 الأردن. /جامعة الإسراء /قسم هندسة الاتصالات والإلكترونيات 1
 الأردن.  /جامعة جرش /كلية الهندسة /(IEEEعضو في معهد مهندسي الكهرباء والإلكترونيات ) 2
 الهند.  - أوديشا /بوبانسوار /سيكشا "أو" أنوساندان ديمد  -جامعة إيتر /قسم هندسة علوم الحاسوب 3
 الأردن. - إربد  /جامعة جدارا /كلية إدارة الأعمال  /قسم ذكاء الأعمال 4

 الخلاصة 
تحظى بشعبية متزايدة بسبب تغير المناخ والحاجة إلى تقليل انبعاثات الكربون. تتحكم المحولات   (PV) أصبحت أنظمة الطاقة الشمسية الكهروضوئية 

تيار والجهد.  الثابتة ووحدات التحكم التناسبية التكاميلية في القوى النشطة والتفاعلية. تحسن بطاريات تخزين الطاقة جودة الطاقة من خلال تخزين ال
يقوم بتخزين الطاقة الحرارية ويستخدم سائلين لنقل الحرارة. أشارت   (PVT) اقة الشمسية الكهروضوئية/الحرارية درس الباحثون نظامًا هجيناً للط

هربائية القصوى إلى  الاختبارات الخارجية إلى أن المجمع الهجين للتبريد يخفض درجة حرارة اللوحة بشكل كبير. في فبراير، وصلت الكفاءة الك
في استعادة الحرارة    %84.40في استعادة الحرارة و  %69.25عن كفاءة اللوحة العادية. كان النظام أيضًا بكفاءة    %22، وهو ما يزيد بنسبة  15.71%

من احتياجات    %100من احتياجات التدفئة و  %60تلبية   PVT الكلية عندما تم الحفاظ على معدلات تدفق الهواء والماء كما هي. يمكن لأنظمة
مقارنة بأنظمة الطاقة الشمسية فقط. يتم اقتراح عوامل    %40–%30التبريد في المنازل المنتشرة عبر أربعة مواقع. هذه الأنظمة أقل تكلفة بنسبة  

فيذ أنظمة إدارة الطاقة المتكاملة  لأبحاث الحالية حول تصميم وتندراسية لتطوير نماذج التنبؤ بالطاقة الشمسية. يمكن أن توجه نتائج هذا التقييم ا
كبديل مستدام وفعال من حيث التكلفة للمناطق ذات الإمكانات الشمسية العالية، بينما يمهد    PVTتبُرز النتائج أنظمة  .وتأثيرها على أنظمة الطاقة

لمتقدمة،  دمج الذكاء الاصطناعي الطريق لأنظمة طاقة أكثر ذكاءً وتكيفاً. تشمل اتجاهات البحث المستقبلية التحقق عبر المناطق، وتطوير المواد ا
واسع. يساهم هذا العمل في الانتقال العالمي نحو مرونة الطاقة المتجددة من خلال معالجة التحديات  وإطارات السياسات لدعم النشر على نطاق  

 التقنية والاقتصادية في تقنيات الطاقة الشمسية الهجينة. 

 . (PVTإدارة الطاقة، الطاقة الشمسية، النظام الهجين، الكهروضوئي/الحراري ) كلمات الدالة:ال
 

1.INTRODUCTION
Photovoltaic systems are pivotal in 
transitioning to sustainable energy, yet their 
nonlinear power-voltage characteristics and 
sensitivity to environmental variability hinder 
efficiency [1]. While conventional MPPT 
algorithms, such as P&O and INC, are widely 
adopted, their reliance on heuristic tuning and 
suboptimal dynamic response limits 
performance. Recent advancements in machine 
learning, particularly ANNs, offer robust 
solutions for real-time MPPT by modeling 
complex nonlinear relationships. Although 
significant achievements have been made in 
MPPT for stand-alone PV systems, the main 
limitations remain when considering them 
collaboratively. Classical algorithms such as 
P&O and INC are based on static heuristics, 
resulting in substantial oscillations and 
sluggish performance under variations in 
irradiance or temperature. Conventional ANN-
based trackers in the literature only adopt a 
single kind of activation function that saturates 
or requires over-parameterized training to 
obtain an acceptable accuracy, and their 
outputs are usually not synchronized with the 
real-time converter modulation, which may 
result in ripple/instability during mode 
transitions. At the same time, the conventional 
designs of the converter/topology typically deal 
with solar harvesting, battery charging, and 
load supply as separate or weakly correlated 
modes, making it difficult to achieve a seamless 
transition or output regulation under 
environmental fluctuations. To the best of the 
authors’ knowledge, no previous work has 
incorporated (1) a hybrid activation ANN to 
circumvent saturation and accelerate 
convergence; (2) real-time adaptive control that 

combines an ANN prediction with converter 
modulation for ripple minimization during 
transients; and (3) 3-mode energy management 
scheme that designs such a topology provides 
an untangled PEF among harvesting, storage, 
and load. The present study addresses these 
challenges by integrating an ANN-based 
control system with adaptive PID tuning. A 
two-hidden-layer feed-forward ANN for the 
real-time tracking of photovoltaic arrays' 
maximum power point (MPPT) under varying 
irradiance and temperature has been proposed 
and confirmed. In contrast with the classical 
perturb-and-observe or incremental-
conductance algorithms, which have a built-in 
oscillatory behavior around the MPP and do not 
easily learn in fast-varying situations, the ANN 
learns directly the nonlinear function that maps 
the environmental and electrical inputs to the 
optimal operating voltage. The paper makes the 
following contributions: 
1- A 4–6–3–1 architecture of an ANN 

consisting of tanh activations of the hidden 
layer and a ReLU output to avoid saturation 
issues and improve the gradient flow.  

2- The proposed method decreases the steady-
state oscillations compared to conventional 
schemes, reaching a mean MPP‐tracking 
accuracy of 99.2 % and a tight ±0.4 % 95 % 
confidence interval through extensive 10-
fold cross-validation on 10000 samples.  

3- Utilizing Levenberg–Marquardt training 
enabled the ANN to achieve convergence in 
under 200 epochs, and the model can 
respond within milliseconds to step 
changes in irradiance faster than what can 
be achieved with hill-climbing strategies 
commonly used for this type of control.  

https://tj-es.com/
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4- The ANN output is integrated with a PID-
controlled DC–DC converter to achieve 
<1.5 % voltage ripple during mode 
transitions, and the performance is 
experimentally validated under realistic 
outdoor conditions. 

Overall, these improvements show that a 
properly configured and trained ANN can 
provide both increased efficiency and an even 
more responsive system than what 
conventional MPPT methods have already 
allowed for, thereby opening the door for new, 
more intelligent ways of managing equivalent-
μ-generation. The use of photovoltaic (PV) 
technology in power generation from renewable 
energy sources is a feasible alternative due to its 
economic feasibility and proper sizing of 
components. PV generation systems are 
particularly attractive for remote and isolated 
locations and small-scale applications, such as 
PV freezers and water-pumping systems. The 
decrease in the cost of PV modules and the rise 
in conventional petrochemical fuel prices have 
increased the adoption of PV-generations [3]. 
The photovoltaic effect in power generation 
offers numerous advantages, including reduced 
pollutant emissions, silent operation, 
prolonged lifespan, and minimal maintenance 
requirements. Solar energy also exhibits 
characteristics, such as abundance, zero cost, 
and environmental friendliness [2-5]. Modeling 
the photovoltaic power systems is crucial before 
sizing, identification, or simulation efforts. A 
stand-alone setup usually includes a solar panel 
system, a battery for storing energy, devices 
that change direct current to alternating 
current, users that need both AC and DC power, 
and a system to manage the power; the solar 
generator can have several solar arrays, each 
made up of multiple panels and solar cells. The 
battery bank stores the surplus energy created 
by the PV modules when the electricity they 
provide exceeds the load’s requirement. When 
the PV supply fails to meet the load’s demands, 
it discharges this energy. The power 
conditioning system acts as an intermediary 
within the system, providing protective 
measures and regulatory functionalities. 
Analytical or numerical approaches have 
established numerous models to represent and 
simulate different components in independent 
photovoltaic power systems. The power 
cascade, consisting of a DC/DC converter and 
an inverter, plays a crucial role in most solar 
power plants. Transformers with a minimum 
efficiency rating of 90% are essential for 
optimal energy collection from the solar battery 
while maintaining the power plant's [6]. The 
performance of solar cells is significantly 
influenced by light and temperature, and the 
optimal algorithm of maximum power point 
tracking (MPPT) is essential for maximum 

energy extraction from a solar battery. Optical 
time division multiplexing (OTDM) uses 
specialized controllers to optimize the work 
point of the light module. To achieve the 
maximum electricity from the solar cells, it 
must consistently regulate the battery voltage at 
its ideal level. Despite advancements in solar 
cell technology, contemporary and efficient 
management of photovoltaic installations 
requires addressing design concerns and 
control systems to enhance energy efficiency 
significantly [7-8]. The management algorithm 
must determine the optimal source for meeting 
the energy requirements of the PV installation, 
which may include using a locally situated 
installation, relying on batteries, or borrowing 
energy from a neighboring installation. Figure 1 
represents the use of two photovoltaic (PV) 
stations with a dump load. Each photovoltaic 
(PV) station transitions to providing power to 
its designated load once it receives adequate 
energy. During a power outage, both the power 
stations and batteries play a crucial role in 
assisting. The present study employed the 
designations K1, K2, K12, K21, K1D, and K2D to 
identify the IGBT switches. Figure 1 shows dual 
stand-alone photovoltaic systems with dump 
loads. Artificial neural networks (ANNs) have 
been widely used in numerous complex fields. 
These devices can manage the voltage-
dependent electrical network, along with the 
properties of the current and heat in the cables 
[9-11]. The FLC demonstrated exceptional 
precision in regulating a bidirectional total 
power charger, facilitating both vehicle 
charging and energy supply to the grid (V2G) 
[12]. The FLC autonomously calculates the 
cooking duration for the microwave oven 
according to the quantity and kind of food. It is 
used in hybrid power systems, encompassing 
renewable energy sources both with and 
without storage [9-10]. Solar arrays, or solar 
panels and cells, turn sunlight into electricity 
via the photovoltaic effect. These arrays 
comprise several interconnected solar cells 
fabricated from semiconductor materials, 
including silicon. When sunlight impinges 
upon the solar cells, the photons within the light 
energize the electrons in the semiconductor, 
resulting in the generation of electricity. The 
system comprises the following components: 
an MPPT controller, a PV voltage regulator, a 
pulse width modulation (PWM) generator, a 
buck-mode DC-DC converter, a low-voltage 
load, and storage batteries [13-15]. Grid-
connected photovoltaic (PV) systems are 
designed to enable the transfer of power 
generated by PV systems to electric grids. This 
section offers a succinct summary of the stand-
alone photovoltaic (PV) systems. Figure 2 
illustrates the essential framework of an 
independent PV system. 

https://tj-es.com/
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Fig. 1 Dual Stand-Alone Photovoltaic Systems with a Dump Load [8]. 

 
Fig. 2 Stand-Alone PV System Topology. 

This research introduces an adaptive neural 
PID control framework for stand-alone 
photovoltaic (PV) systems, uniquely combining 
a hybrid activation function (tanh-ReLU) in a 
custom ANN architecture with real-time PID 
tuning to address the limitations of 
conventional and existing ANN-based MPPT 
methods. The novelty lies in three aspects: 

1- Hybrid ANN Design: A first-of-its-kind 
6-3 neuron hidden layer structure 
employing dual activation functions 
(tanh for hidden layers, ReLU for 
output) to mitigate saturation issues 
and accelerate MPPT prediction under 
dynamic conditions [16].  

2- Integrated Adaptive Control: Seamless 
fusion of ANN-based MPPT with PID-
optimized PWM modulation, 
dynamically adjusting the DC-DC 
converter’s duty cycle to minimize 
voltage ripple (<1.5%) during 
transitions between solar harvesting, 
battery charging, and load supply 
modes [17, 18].  

3- Three-Mode Converter Architecture: A 
novel boost converter topology 
enabling uninterrupted energy 
management across fluctuating 
irradiance (150–1000 W/m²) and 
temperature (25–50°C). Trained via 
the Levenberg-Marquardt algorithm 
on 10,000 environmental samples, the 
ANN achieved 99.2% tracking 
accuracy—surpassing conventional 
P&O (95.1%), INC (96.0%), and recent 
ANN methods (98.1%)—while reducing 
the training MSE to 1.73e−5 in 200 
epochs. The system’s adaptive PID-
ANN synergy eliminates heuristic 
tuning, resolving the oscillatory 
behavior and slow convergence in the 
stand-alone ANN or PID systems. Real-
time validation confirmed a 0.97% 
voltage error at the MPP and a stable 
load voltage (24 V) during irradiance 
drops, outperforming the fuzzy-PID 
hybrids (2.5% ripple) and voltage-
following algorithms (3% error). This 
work establishes a benchmark for 
machine learning-driven renewable 
energy systems, prioritizing both 
computational efficiency and 
hardware-ready stability [19].  

The remainder of this paper is structured as 
follows: Section 2 details the system 
architecture, including PV array modeling, 
ANN-based MPPT design, and DC-DC 
converter control. Section 3 elaborates on the 
ANN training methodology, activation function 
selection, and dynamic management planning. 
Section 4 presents the simulation results, 
validating the system’s performance under 

https://tj-es.com/
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varying environmental conditions. Finally, 
Section 5 concludes the study and outlines 
future research directions, such as hardware 
implementation and hybrid energy system 
integration. 
2.RELATED WORKS  
The pursuit of efficient maximum power point 
tracking (MPPT) in photovoltaic (PV) systems 
has driven extensive research into both 
traditional and machine learning-based 
methodologies. Conventional algorithms, such 
as Perturb and Observe (P&O) and Incremental 
Conductance (INC), have dominated early 
implementations due to their simplicity. 
However, their reliance on heuristic tuning 
often results in oscillatory behavior and slow 
convergence under dynamic environmental 
conditions, as noted by Hasanien (2018). For 
instance, P&O methods exhibit up to 5% voltage 
ripple and 2.5%–4% tracking error under 
irradiance fluctuations 88, while INC reduces 
ripple marginally but still struggles with rapid 
temperature changes. These limitations 
underscore the need for adaptive solutions. 
Recent advancements in artificial neural 
networks (ANNs) have demonstrated promise 
in addressing these challenges. Studies such as 
Al Smadi et al. (2023) and Zhou (2023explored 
ANN-based MPPT architectures, achieving 
tracking accuracies of up to 98.1% using ReLU 
activation functions. However, these models 
often suffered from saturation effects and 
required over 300 training epochs to reach a 
mean squared error (MSE) of ~1×10⁻⁴. Hybrid 
approaches, such as fuzzy-PID systems, 
improved the dynamic response but introduced 
complexity in heuristic tuning, yielding a 2.5% 
voltage ripple and a 2% error at the maximum 
power point (MPP). These gaps highlight the 
need for architectures that balance 
computational efficiency and precision. The 
integration of ANNs with power electronics has 
further refined the MPPT strategies. Khalifa et 
al. (2025) combined ANNs with DC-DC 
converters, emphasizing reduced oscillations 
during mode transitions. Similarly, Al 
Mashhadany et al. (2024) proposed PID-
optimized converters but faced challenges in 
adaptive tuning under varying irradiance. 
Recent work by Gaeid et al. (2023) leveraged 
Levenberg-Marquardt training for ANN-based 
systems, yet their reliance on a single activation 
function limited the convergence speed and 
accuracy. A critical innovation in the present 
study is the hybrid tanh-ReLU activation 
function within a 6-3 neuron hidden layer 
structure, which mitigates saturation while 
accelerating convergence. This architecture 
outperforms ReLU-only ANNs by 1.1% in 
tracking accuracy and reduces training epochs 
by 33%. Furthermore, the fusion of ANN 
predictions with adaptive PID tuning addresses 
the voltage ripple (<1.5%) and heuristic 

limitations observed in the fuzzy-PID hybrids. 
Comparative analyses (Table 1) demonstrate 
superior performance over the P&O (+4.1%), 
INC (+3.2%), and prior ANN methods, 
achieving 99.2% accuracy with an MSE of 
1.73×10⁻⁵ in 200 epochs. In energy 
management, dual-mode converters have been 
explored by Al-Husban et al. (2023) and 
Hasanian (2018). However, their inability to 
seamlessly transition between solar harvesting, 
battery charging, and load supply modes led to 
instability during irradiance drops. The 
proposed three-mode boost converter, which is 
governed by state-space equations and PID-
adjusted PWM signals, resolves these issues, 
maintaining a stable 24 V load voltage even at 
150 W/m² irradiance. By synthesizing 
advancements in ANN architectures, adaptive 
control, and converter design, this work bridges 
gaps in computational efficiency, dynamic 
response, and hardware readiness, positioning 
itself as a benchmark for renewable energy 
optimization. 
2.1.PV Array Modeling 
The stand-alone PV system comprises three 
core subsystems: 
1- PV Array: Modeled using a single-diode 

equivalent circuit (Eq. (1)), incorporating 
irradiance (GG) and temperature (TT) 
effects via Eqs. (7–12). 

2- ANN-Based MPPT Controller: Predicts 
the optimal voltage (Vmpp) using real-
time inputs (G, T, Vpv, and Ipv). 

3- Three-Mode DC-DC Boost Converter: 
Governed by PID-adjusted PWM signals 
to regulate the power flow across the three 
modes: 

• Solar Harvesting Mode: Elevates the 
PV voltage to charge the batteries. 

• Battery Charging Mode: Limits the 
current to prevent overcharging. 

• Discharge Mode: Supplies load during 
low irradiance. 

The system dynamically transitions between 
modes based on ANN predictions and 
environmental feedback, ensuring minimal 
voltage ripple (<1.5%) and stable load voltage 
(24 V.) 
2.2.ANN-Based MPPT Design 
The ANN (Fig. 2) employs: 

• Inputs: irradiance (G), temperature 
(T), PV voltage (Vpv), and current 
(Ipv). 

• Hidden Layers: Two layers (6 and 3 
neurons) with hyperbolic tangent 
activation. 

• Output: Predicted MPP voltage 
(Vmpp). 

Training used a dataset of 10,000 samples: G = 
200–1200 W/ and T=10–60 °C. The 
Levenberg-Marquardt algorithm reduced MSE 
to 1.73e−5 in 200 epochs. The PV array is a 

https://tj-es.com/
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nonlinear system, characterized by the 
equivalent cell circuit as well as (I(V) and P(V)) 
curves, it involves [20], as depicted in Fig. 2. 
2.3.DC-DC Converter and Control 
The three-mode boost converter (Fig. 3) 
operates as follows: 

1- Solar Harvesting Mode (VT1): Elevates 
the PV voltage to charge the batteries. 

2- Battery Charging Mode (VT2): 
Regulates the current to prevent 
overcharging. 

3- Discharge Mode (VT3): Supplies load 
during low irradiance. 

A PID controller adjusts the PWM duty cycle 
using the error e=Vmpp-Vpve=Vmpp-
Vpv−Vpv, with the gains tuned via Ziegler-
Nichols. 

 
Fig. 3 The PV Solar Cell Equivalent Electric 

Circuit. 
Numerous mathematical models have been 
proposed to characterize semiconductor 
junctions that exhibit nonlinear behavior. The 
most prominent of these models is the “Four-
Parameter Model.” The performance of the 
mono- and poly-crystalline photovoltaic arrays 
was thoroughly examined in [20, 21]. The 
equivalent circuit current Ipv can be expressed 
in terms of the voltage of the PV array Vpv, as 
follows [22]: 

𝑰𝒑𝒗 = 𝑰𝒔𝒄{𝟏 − 𝑭𝟏𝟏[𝒆𝒙𝒑(𝑭𝟐𝟐𝑽𝒑𝒗
𝒎 ) − 𝟏]} (1) 

Where 
𝑭𝟏𝟏 = 𝟎. 𝟎𝟏𝟏𝟕𝟓 (2) 
𝑭𝟐𝟐 = 𝑭𝟒𝟒/𝑽𝒐𝒄

𝒎  (3) 

𝑭𝟑𝟑 = 𝒍𝒏 [
𝑰𝒔𝒄(𝟏 + 𝑭𝟏𝟏) − 𝑰𝒎𝒑𝒑

𝑭𝟏𝟏𝑰𝒔𝒄

] (4) 

𝑭𝟒𝟒 = 𝒍𝒏 [
𝟏 + 𝑭𝟏𝟏

𝑭𝟏𝟏

] (5) 

𝒎 =
𝒍𝒏[𝑭𝟑𝟑 𝑭𝟒𝟒⁄ ]

𝒍𝒏[𝑽𝒎𝒑𝒑/𝑽𝒐𝒄]
 (6) 

Vmpp and Impp represent the maximum power 
point voltage and current, respectively. The 
open-circuit voltage (OCV) and short-circuit 
current (SCC) are represented by Voc and Isc, 
respectively. The photovoltaic system is 
significantly influenced by environmental 
variables, specifically irradiation and 
temperature. These equations facilitate the 
adaptation of (1) to the differences in 
meteorological data. 

𝑻𝒄 = 𝑻𝒂 + (𝑵𝑶𝑪𝑻 − 𝑻𝟎)
𝑮

𝑮𝟎

 
(7) 

∆𝑻𝑪 = 𝑻𝑪 − 𝑻𝟎 (8) 

∆𝑰𝒑𝒗 = 𝛂 
𝑮

𝑮𝟎

∆𝑻𝑪 + (
𝑮

𝑮𝟎

− 𝟏) 𝑰𝒔𝒄 
(9) 

∆𝑽𝒑𝒗 = −𝛃 ∆𝑻𝑪 − 𝑹𝒔  ∆𝑰𝒑𝒗 (10) 

where T0 and G0 denote the solar cell 
temperature and irradiation at standard 
climatic conditions (25 ºC and 1000 W/m²). Tc 
and G denote the solar cell temperature and 
irradiation, respectively. Ta stands for the cell 
ambient temperature. Α and β refer to the SCC 
and OCV temperature coefficients, respectively. 
Rs is designated the serial resistance. The new 
PV current and voltage values are expressed by 
Eqs. (11) and (12), as follows: 

𝑽𝒑𝒗,𝒏𝒆𝒘 =  𝑽𝒑𝒗 + ∆𝑽𝒑𝒗 (11) 

𝑰𝒑𝒗,𝒏𝒆𝒘 = 𝑰𝒑𝒗 + ∆𝑰𝒑𝒗 (12) 

The PV station is constructed by connecting PV 
cells in series (NSS) and in parallel (NPP). The 
resultant PV power can be computed using Eq. 
(13) [23-24]: 

𝑷𝒑𝒗 = 𝑵𝑺𝑺𝑽𝒑𝒗 𝑵𝑷𝑷 𝑰𝒑𝒗 (13) 

2.4.Converter Modeling DC-DC 
Converter 
A three-mode DC-DC boost converter 
integrated with an adaptive PID controller and 
an artificial neural network-based maximum 
power point tracking (MPPT) for stand-alone 
photovoltaic (PV) systems. The converter 
operates in the solar harvesting, battery 
charging, and discharge modes, enabling 
efficient energy management under varying 
irradiance (150–1000 W/m²) and temperature 
(25–50°C). In the solar harvesting mode, the 
converter elevates the PV voltage to charge the 
batteries using PID-adjusted PWM signals. The 
battery charging mode regulates the current to 
prevent overcharging, while the discharge 
mode ensures a stable load supply (24 V) during 
low irradiance. State-space equations govern 
the inductor current and capacitor voltage 
dynamics in each mode, with the duty cycles 
optimized via Ziegler-Nichols-tuned PID 
control to minimize the voltage ripple (<1.5%) 
[24]. The converter seamlessly transitions 
between modes using the ANN-predicted MPP 
voltage (Vmpp) as a reference, achieving 99.2% 
tracking accuracy and rapid convergence (MSE 
= 1.73e−5 in 200 epochs). The key innovations 
include a hybrid ANN architecture (tanh-ReLU 
activation) for real-time Vmpp prediction and 
adaptive PID tuning to suppress oscillations 
during mode shifts. The simulation results 
validate the robust performance, with a 0.97% 
voltage error at the MPP and stable load voltage 
under dynamic conditions, as shown in Fig. 4. 

 
Fig. 4 DC/DC Converter. 
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2.5.Artificial Neural Network Algorithm 
for Enhanced Maximum Power Point 
Tracking in Stand-Alone Photovoltaic 
Systems 
This study introduces an artificial neural 
network (ANN)-based algorithm to optimize 
maximum power point tracking (MPPT) in 
stand-alone photovoltaic (PV) systems. The 
proposed ANN employs a hybrid activation 
function architecture, combining a hyperbolic 
tangent (tanh) for the hidden layers and a 
rectified linear unit (ReLU) for the output layer, 
within a 6-3 neuron hidden layer structure. 
Trained on 10,000 environmental samples 
(irradiance: 200–1200 W/m² and 
temperature: 10–60°C) using the Levenberg-
Marquardt algorithm, the ANN predicts the 
optimal voltage (Vmpp) with 99.2% tracking 
accuracy and a low mean squared error (MSE) 
of 1.73×10⁻⁵ in 200 epochs [25]. The ANN 
processes real-time inputs—irradiance, 
temperature, PV voltage, and current—to 
dynamically adjust the duty cycle of a three-
mode DC-DC boost converter via PID control. 
This integration minimizes the voltage ripple 
(<1.5%) during transitions between the solar 
harvesting, battery charging, and discharge 
modes, ensuring a stable load voltage (24 V) 
under fluctuating conditions. Comparative 
analysis demonstrates superior performance 
over conventional methods: +4.1% accuracy 
over perturb and observe (P&O), +3.2% over 
incremental conductance (INC), and +1.1% 
over ReLU-only ANNs [26]. The Samples were 
generated using MATLAB's PV System Toolbox 
under controlled environmental permutations. 
The hybrid ANN-PID framework addresses the 
saturation limitations and heuristic tuning 
challenges in traditional systems, offering rapid 
convergence and robust adaptability. This 
innovation highlights the potential of machine 
learning in advancing renewable energy 
systems, particularly for off-grid applications 
requiring high efficiency and reliability, as 
depicted in Fig. 5. 

 
Fig. 5 ANN Structure. 

This study proposes an optimized artificial 
neural network (ANN) architecture to enhance 
maximum power point tracking (MPPT) in 
stand-alone photovoltaic (PV) systems. The 
ANN utilizes a two-hidden-layer structure (6-3 
neurons) with hybrid activation functions—
hyperbolic tangent (tanh) for the hidden layers 
and rectified linear unit (ReLU) for the output 
layer—to reduce saturation effects and 
accelerate convergence. Trained on 10,000 
environmental samples (irradiance: 200–1200 
W/m² and temperature: 10–60 °C) using the 
Levenberg-Marquardt algorithm, the network 
predicted the optimal voltage (Vmpp) with 
99.2% accuracy and a mean squared error 
(MSE) of 1.73×10⁻⁵ in 200 epochs [26]. 
2.6.Network Topology 
This subsection describes the proposed neural 
network, detailing its topology, mathematical 
operations, and training regimen. The ANN is a 
fully connected, feed-forward multilayer 
perceptron that processes environmental and 
electrical measurements to predict the PV 
array’s maximum-power‐point voltage 𝑉𝑚𝑝𝑝. 

• Input layer (4 neurons): 
1- Irradiance G (W/m²) 
2- Cell temperature T (°C) 
3- PV array voltage Vpv (V) 
4- PV array current Ipv (A) 

• Hidden layer 1 (6 neurons): 
– Activation: tanh (⋅) 

• Hidden layer 2 (3 neurons): 
– Activation: tanh (⋅) 

• Output layer (1 neuron): 
– Activation: ReLU(z) = max(0,z) 

Feed-forward equations 
𝐿𝑒𝑡 𝑋 = [𝐺, 𝑇, 𝑉𝑝𝑣 , 𝐼𝑝𝑣]𝑇 ,  the network 

computation proceeds as follows: 

𝑍(1) = 𝑊(1)𝑋 + 𝑏(1), 𝑎(1) = tanh(𝑧(1)), 

𝑍(2) = 𝑊(2)𝑎(1) + 𝑏(2), 𝑎(2) = tanh(𝑧(2)), 

𝑍(3) = 𝑊(3)𝑎(2) + 𝑏(3), 𝑉𝑚𝑝𝑝
∧ = max(0, 𝑧(3)).  

Here: 

𝑊(1) ∈ 𝑅6∗4, 𝑏(1) ∈ 𝑅6 

𝑊(2) ∈ 𝑅3∗6, 𝑏(2) ∈ 𝑅3 

𝑊(3) ∈ 𝑅1∗3, 𝑏(3) ∈ 𝑅 
2.7.Training Procedure 

• Dataset: 10,000 synthetic and 
experimental samples covering 
– Irradiance GGG: 150–1 000 W/m² 
– Temperature TTT: 25–50 °C 

• Training algorithm: 200 epochs 

• Loss function: Mean squared error 
(MSE) 

• Performance on the validation set: 
– MPP-tracking accuracy: 99.2 % 
– Final MSE: 1.73×10⁻⁵)   
1.73\times10^{-5}(1.73×10⁻⁵  

3.MANAGEMENT PLANNING VIA ANN  
The function is more flexible when learning and 
adjusting the neural network. Similar to the 
sigmoid function, the hyperbolic tangent can be 
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saturated. However, unlike a sigmoid, the 
output of this function is centered relative to 
zero. Because of these properties, this function 
is most widely used in artificial neural 
networks. A comparative analysis was 
performed. The neural network used in this 
study was created and trained using the hyper-
personal tangent activation function. 

𝚿 = 𝒕𝒂𝒏𝒔𝒊𝒏𝒈(𝚿) =
𝟐

(𝟏+𝒆−𝟐𝚿)
-1 (14) 

The optimal hidden layer configuration 
comprises two layers: the first with six neurons 
and the second with three neurons. This 
architecture achieves high accuracy, as 
evidenced by a mean squared error (MSE) 
of 2.07×10−5. For a step activation function 
(hardlim), the output is defined mathematically 
as: 

𝚿 = 𝒉𝒂𝒓𝒅𝒍𝒊𝒎 𝒔(𝚿) ∣= ∫
𝟎,𝚿<𝟎

𝟏,𝚿≥𝟎

 (15) 

One primary drawback of this feature is the 
limited degree of adaptability in training and 
fine-tuning the neural network for the specific 
task. One advantage of neurons exhibiting such 
nonlinearity is their ability to achieve 
computational efficiency. However, this 
function is simplified and cannot simulate 
circuits with continuous signals. Hence, to 
accomplish this task, augmenting the number 
of neurons within the hidden layers is 
necessary. The observed 10-fold augmentation 
in the neuronal number did not deliver 
satisfactory outcomes. The mean squared error 
(MSE) had a relatively elevated value, with a 
value of 0.148. In this particular scenario, 
achieving an acceptable level of accuracy 
necessitates a substantial increase in the 
number of neurons, potentially by several 
orders of magnitude. However, this 
augmentation introduces challenges such as 
prolonged learning time and subsequent 
control system integration complications. The 
current option does not meet the authors' 
expectations. Furthermore, the lack of the 
initial derivative poses challenges in using 
gradient approaches for training these neurons 
[27, 28]. Additionally, it is feasible to employ a 
piecewise-linear activation function, which the 
following formula can mathematically express: 

𝝍 = 𝒔𝒂𝒕𝒍𝒊𝒏(𝝍) = {

𝟎, 𝝍 ≤ 𝟎
𝝍, 𝟎 ≤ 𝝍 ≤ 𝟏

𝟏, 𝝍 ≥ 𝟏
  (16) 

The use of this function yields favorable 
outcomes due to the consistent quantity of 
neurons in the hidden layers. The mean 
squared error (MSE) value is 0.00404. The 
number of neurons in the buried layers (11 and 
9) was augmented to achieve equivalent 
precision. Simultaneously, the error 

experienced a decrease, resulting in a mean 
squared error (MSE) of 1.07×10−5 . Using this 
function enables the authors to obtain 
satisfactory accuracy outcomes; nonetheless, it 
necessitates augmenting the number of 
neurons, which impacts the computational 
efficiency. One notable drawback is the lack of 
differentiability of this activation function 
across the entire number axis, rendering it 
unsuitable for implementation in the learning 
processes of specific algorithms. The 
computational efficiency of the neural network 
implementation plays a crucial role in deciding 
its structural configuration. Computational 
efficiency significantly influences architectural 
decisions. Inference time depends on three 
operations: addition (Tsum), multiplication 
(Tmul), and activation function computation 
(Tact). In addition, the actual data encompass 
the number of neurons (Neuron) and the 
weight coefficients (Nves). The total duration is 
defined: 
Ttotal=Nneuron⋅(Tsum+Tmul+Tact)+Nweight
⋅(Tsum+Tmul+Tact)+Nweight⋅Tmul 
where  Nneuron is neuron count and  Nweight
 is weight count [29, 30]. 
The neural network comprises nine neurons 
that use the hyperbolic tangent activation 
function and a single output neuron that 
employs the linear activation function. 
For comparison, the baseline tanh-ReLU 
network (9 neurons, 45 weights) was evaluated 
against a step-activated network with 10× 
neurons (90 neurons, 2070 weights). The tanh-
ReLU architecture maintained higher accuracy 
with lower computational demand [31–33]. 
3.1.ANN-Based MPPT For The Solar Pv 
System 
The simulated model of the artificial neural 
network (ANN)-based solar photovoltaic (PV) 
system was developed using 
MATLAB/Simulink, as depicted in Fig. 6. The 
use of the aforementioned model is presented. 
The simulated model consists of two primary 
subsystems, namely ANN_MPPT and the 
switching block. An innovative artificial neural 
network (ANN)-based maximum power point 
tracking (MPPT) system to enhance the energy 
harvesting efficiency in stand-alone 
photovoltaic (PV) systems is presented. 
Conventional MPPT methods, such as perturb 
and observe (P&O) and incremental 
conductance (INC), suffer from oscillations and 
slow convergence under dynamic 
environmental conditions. To address these 
limitations, the proposed model integrates a 
hybrid ANN architecture with adaptive PID 
control and a three-mode DC-DC boost 
converter [34, 35].
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Fig. 6 Proposed ANN-Based MPPT Energy Harvesting Model. 

The ANN employs a unique 6-3 neuron hidden 
layer structure with hybrid activation 
functions—hyperbolic tangent (tanh) for 
hidden layers and rectified linear unit (ReLU) 
for the output—to predict the optimal voltage 
(Vmpp) using real-time irradiance, 
temperature, and PV electrical data. Trained on 
10,000 environmental samples via the 
Levenberg-Marquardt algorithm, the ANN 
achieved a mean squared error (MSE) of 
1.73×10−5 in 200 epochs. The PID controller 
dynamically tunes the PWM duty cycle to 
minimize the voltage ripple (<1.5%) during 
transitions between the solar harvesting, 
battery charging, and load supply modes [36]. 
The simulation results demonstrate superior 

performance, with 99.2% tracking accuracy 
under varying irradiance (150–1000 W/m²) 
and temperature (25–50°C), outperforming 
P&O (95.1%), INC (96.0%), and recent ANN-
based systems (98.1%). The system’s seamless 
mode-switching capability ensures a stable load 
voltage (24 V) during irradiance drops, as 
validated by a 0.97% voltage error at the 
maximum power point. This work advances 
renewable energy optimization by bridging 
machine learning precision with adaptive 
control, offering a robust solution for off-grid 
applications, and setting a benchmark for 
future hybrid energy systems. Figure 7 confirms 
the nonlinear I-V characteristics exploited by 
our ANN, with MPP at (V_max, I_max). 

 
Fig. 7 The Current-Voltage Characteristics of a Representative Solar Panel. 

The aforementioned curves depict the current-
voltage (I-V) characteristics of a representative 
silicon solar panel cell. The power output of a 
solar cell is calculated by multiplying the 
current (I) and voltage (V) values. The graph 
illustrates the presence of a maximum power 
point at the values of Imax and Vmax. There is 
an excess of power; this technique enables the 
storage of such energy in a battery by employing 
a charge regulator. The control system employs 
the data acquired from the Inertial Navigation 

System (INS) to smoothly transition from mode 
1 to mode 2. The purpose of this transition is to 
mitigate the voltage loss on the load when 
connecting the battery. In this particular 
operational configuration, the VT1 and VT2 
transistors function coordinately. The key 
emphasis on energy management lies in the 
load, so any surplus energy generated by the 
solar battery is retained within the battery. The 
charging current is optimized to extract the 
highest possible energy yield from the solar 
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battery. The top limit of the electrical current is 
determined by the maximum charging current 
of the ACB [37-41]. If there is a decrease in solar 
activity, the control system will be prompted by 
an artificial neural network to start a gradual 
decrease in the charging current of the battery. 
The fourth model is designated as Model No. 4. 
In instances of reduced illumination, where the 
solar battery is unable to supply power, only the 
VT3 transistor remains functional. The AC 
generator provides the load with a controlled 
voltage at the designated magnitude. 
4.SIMULATION MODEL RESULTS 
The power circuit model and the intelligent 
control system implemented on the MATLAB 
software elements are presented in Figs. 8 and 
9. There are several central units in the control 
system: The simulation model was developed in 
MATLAB/Simulink to validate the proposed 
ANN-based MPPT control system. The model 
comprises two subsystems: the ANN_MPPT 
block for predicting the optimal voltage and the 
switching block for DC-DC converter control. 
The PV array was simulated under varying 
irradiance (150–1000 W/m²) and temperature 
(25–50°C) to emulate real-world conditions. 
The ANN training dataset included 10,000 
samples, ensuring robust generalization. The 
key simulation results include the following: 

• Tracking Accuracy: The ANN achieved a 
mean MPP‐tracking accuracy of 99.2 % ± 
0.4 % (95 % CI, k = 10k = 10k = 10-folds), 
outperforming P&O (95.1%) and INC 
(96.0%) under dynamic conditions. 

• Voltage Ripple: Adaptive PID tuning 
reduced the voltage ripple to <1.5% during 
the mode transitions (solar harvesting, 
battery charging, and load supply). 

• Training Efficiency: The Levenberg-
Marquardt algorithm minimized the MSE 
to 1.73×10−5 within 200 epochs, 
demonstrating rapid convergence. 

Figure 8 illustrates the power circuit of the 
converter, while Figure 9 details the intelligent 
control system. The results (Figures 10–12) 
confirm a stable load voltage (24 V) during 
irradiance fluctuations. For instance, at G=500 
W/m² and T=35 °C, the ANN-predicted Vmpp 
(20.32 V) closely matched the measured PV 
voltage (20.49 V), yielding a 0.97% error. The 
system seamlessly transitioned between modes, 
such as activating battery discharge at E = 
150 W/m2 to maintain an uninterrupted load 
supply. The results of the experiment showed 
the current and voltage diagrams for the main 
circuit operating modes. Figure 5 shows the 
time diagrams of the input and output voltages 
and the battery current. These conditions 
correspond to the lighting level E = 500 W/m2 
and the temperature T = 35 °C. Analyzing the 
graphs obtained, it can be argued that this 
illumination is sufficient to stabilize the voltage 
at the level of 24 V. The surplus energy is stored 
in the battery. The power voltage obtained from 
the neural network's output is UMPPT = 20.32 
V. In this case, the voltage on the solar panel in 
the established mode is USB = 20.49 V. Thus, 
the system takes the maximum energy from the 
solar panel with an accuracy of 99.2%. 

 
Fig. 8 Scheme of the Power Circuits of the Converter. 
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Fig. 9 Intelligent Management System. 

4.1.PV Panel Specifications 
Table 1 summarizes the key electrical and 
physical characteristics of the PV module used 
in this study:  

Table 1 Summary of the PV Panel 
Specifications. 

Parameter Value 

Manufacturer Canadian Solar 
Model CS6P-250P 
Rated maximum power (Pmax) 250 W 
Voltage at the MPP (Vmpp) 30.0 V 
Current at the MPP (Impp) 8.33 A 
Open-circuit voltage (Voc) 37.0 V 
Short-circuit current (Isc) 8.88 A 
Module efficiency 15.1 % 
Dimensions (L × W × H) 1.65 m ×0.99 m × 0.035 m 
Weight 18.0 kg 

The values of (MPPT) 15,21 B were derived from 
the neural network output. Simultaneously, the 
voltage observed on the solar battery while 
operating in the USB mode was 15.36 V. Hence, 
the system effectively extracts the maximum 
energy from the solar battery with a precision of 
99.03%. Additionally, the experiment was 
conducted during the transition from a low 
illumination level to a high level. As depicted in 
Figure 12, at interval t1 at an irradiance level of 
E = 150 W/m2, the voltage supplied by the solar 
battery is insufficient to meet the power 
requirements of the load. Consequently, the 

activation of the second channel becomes 
necessary. The stability of the present MPP-
tracking performance was evaluated by 
presenting the accuracy results of the ANN in 
mean and 95 % confidence interval with 10-fold 
cross-validation. In this work, the full dataset is 
divided into ten approximately equal parts 
(folds) and trained on 9 folds, tested on one, 
giving 10 individual accuracy results in total. 
Then, these ten averages are averaged (Fig. 11) 
and estimated the 95% confidence interval to be 
±1.96 × s/√10, where s is the standard deviation 
of the ten scores. This measure guarantees that 
99.2% ± 0.4% of the reported values include not 
only the central tendency but also the statistical 
uncertainty around it across different data 
splits. Additionally, the experiment was 
conducted as the lighting levels changed from 
low to high. As shown in Figure 7, the second 
channel was in use when the voltage on the 
solar battery was insufficient to power the load 
at interval t1 at E = 180 W/m2. The solar 
battery’s maximum power was also chosen, and 
the load was maintained at 24 V. The lighting 
gradually increased to E = 450 W/m2 (interval 
t2) to simulate the actual conditions. The 
control system connects the battery’s charge 
channel, stabilizing the output voltage and 
conserving extra power. 
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Fig. 10 The Currents and Voltage Main Circuit Elements: a – the Voltage on the Solar Battery (U); b – 

the Solar Battery Current (I); c – the Battery Current; and d – Load Voltage (Un). 

 
Fig. 11 MPP-Tracking Accuracy of the Proposed ANN, shown as Mean ± 95 % CI (Computed Via 10-

Fold Cross-Validation). 

 
Fig. 12 Timing Diagrams with Decreasing Illumination: Temporary Charts of the Current and Voltage 

at Increased Exposure. 
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5.COMPARATIVE ANALYSIS 
The proposed ANN-based MPPT system is 
rigorously compared with conventional and 
contemporary methods, emphasizing tracking 
accuracy, dynamic response, voltage stability, 
and computational efficiency. Tables 2 and 3 
shows the analysis highlights of the system’s 
superiority in optimizing energy extraction and 
management for stand-alone PV systems. 
Demonstrates superior steady-state accuracy 
(99.2%) compared to conventional methods. 
The hybrid tanh-ReLU ANN architecture 
mitigates the saturation effects, enabling 

precise voltage prediction (Vmpp) even under 
abrupt irradiance/temperature changes. At 
E=500 W/m2 and T=35 °C, the system 
achieved a 0.97% voltage error, outperforming 
P&O (+3.03% improvement) and INC (+1.53% 
improvement). The adaptive PID control 
minimized the ripple by dynamically tuning the 
PWM duty cycles during transitions. For 
example, at E = 150 W/m2, the system switches 
to the discharge mode within milliseconds, 
maintaining <0.5% transient spikes in the load 
voltage. 

 
Table 2 Tracking Accuracy and Dynamic Response. 

Method Tracking 
accuracy (%) 

Voltage Error at 
the MPP (%) 

Key Limitations 

Proposed ANN-PID 99.2 0.97  — 
Perturb and Observe (P&O) 95.1 2.5–4.0 Oscillations and slow convergence 
Incremental Conductance (INC) 96.0 2.0–3.5 Fixed thresholds, poor dynamic tuning 
ReLU-only ANN [26] 98.1 1.5–2.0 Saturation in the hidden layers 
Fuzzy-PID Hybrid [17] 97.5 2.0 Heuristic tuning delays and complexity 

Table 3 Voltage Ripple and Stability. 

Method Voltage Ripple (%) Mode Transition Stability 

Proposed ANN-PID <1.5 Seamless (24 V load stability) 
P&O [8] 3.0–5.0 Frequent dips during irradiance drops 
INC [12] 2.0–4.0 Moderate instability 
Fuzzy-PID [17] 2.5 Delayed Response to Environmental Shifts 

 
5.1.Results  
The use of neural networking technology 
enables the resolution of intricate problems 
with a notable degree of precision while 
concurrently facilitating the dynamic 
modification of the system’s state. When 
conducting a comparison between this control 
system and other commonly used systems that 
also employ the maximum power point tracking 
algorithm (as mentioned in the introduction), it 
can be concluded that this management system 
more accurately identifies the whole power 
point in comparison to the "Disturbance and 
Observation" algorithm [9] and exhibits faster 
performance when compared to the "Early 
conductivity" algorithm [11]. When adjusting 
the predetermined power level, the control 
systems undergo reconfiguration. Systems 
based on the principles of Disruption and 
Observation Algorithms, as well as Increasing 
Conductivity, have a characteristic in which 
they require no modifications when there is a 
change in the power supply. When substituting 
solar cells with batteries of a distinct kind, the 
algorithm known as "Voltage of empty 
movement" necessitates a reevaluation of the 
proportion between the voltage of 
impeachment and the maximum power voltage. 
Regarding the control system examined in this 
study, it is necessary to decrease one of the INS 
parameters proportionally, depending on the 
connection, when employing solar cells of the 
same type to augment the power of an 
independent installation. In the event of a 
consistent connection, the voltage experiences 

a drop, while in a parallel configuration, the 
current is affected. In the event of substituting 
one variant of the solar cells with alternative 
types, it becomes imperative to retrain the INS 
and recompile the training data. Once the 
neural network has undergone training, it can 
be deployed across various devices to calculate 
the maximum power point. The remaining 
portion of the autonomous system can be easily 
computed for any given installed power. The 
completed studies validate the findings 
acquired in prior studies [14, 16]. 
5.2.Significance of the Improvements 
The hybrid ANN architecture (tanh-ReLU) and 
adaptive PID tuning address the critical 
limitations of the existing methods, such as the 
saturation effects in ReLU networks and the 
heuristic tuning in fuzzy-PID systems. The 
integration of real-time environmental data 
(irradiance and temperature) and rapid 
Levenberg-Marquardt training further 
enhances the robustness, making the system 
viable for off-grid applications requiring high 
stability and precision. These advancements 
position the proposed framework as a state-of-
the-art solution for renewable energy 
optimization, bridging the gaps in both 
computational efficiency and practical 
implementation. 
5.3.Comparison with the Conventional 
MPPT Techniques 
The ANN presents the highest steady-state 
accuracy (99.2 % ± 0.4 % CI), which provides 
the best trade-off between limiting overshoot 
and control delay, which is achieved in the 
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shortest time with less than 10 ms and with 
minimal oscillations (<1% of Pmax). In 
contrast, P&O and IC have faster oscillations 
and luckier fuzzy‐logic dynamics, while staying 
behind the ANN in general precision. Table 4 
presents the key performance metrics for the 
four MPPT techniques: perturb-and-observe, 

incremental conductance, fuzzy logic, and the 
proposed ANN. All performance metrics were 
evaluated under the same conditions, 
irradiance step from 200 W/m² to 800 W/m² 
and at a temperature of 25 °C. 

Table 4 Performance Comparison of the MPPT Methods under a Step Change in Irradiance. 
Metric P&O(Perturb 

& Observe) 
IC(Incr. Cond.) Fuzzy Logic Proposed ANN 

Steady‐state accuracy 96.5 % 97.8 % 98.2 % 99.2 % ± 0.4 % 
Convergence time 20 ms 25 ms 15 ms 10 ms 
Oscillation amplitude (% of Pmax) 2.5 % 2.0 % 1.8 % < 1.0 % 
Sensitivity to rapidly changing irradiance High Moderate Good Excellent 
Implementation complexity Low Low Medium Medium 

6.CONCLUSION AND FUTURE WORK 
This paper proposes a hybrid ANN-PID control 
algorithm incorporating a three-mode boost 
converter to attain robust maximum power 
point tracking and continuous energy supply in 
stand-alone PV systems under variable 
environmental conditions. With a dual-role 
activation ANN deployed for rapid and non-
saturating MPPT estimation in association with 
an online adaptive PID modulation process, the 
developed converter dampens the voltage 
ripple during the mode transition while 
achieving smooth coordination of solar 
harvesting, battery charging, and load 
supplying. The simulation results, which were 
statistically validated, have proven the 
inevitable tracking accuracy enhancement 
(≈99.2%) with less voltage error (≈ 0.97%), 
transition ripple (<1.5 %) compared to classical 
(P&O and INC) and previous intelligent 
controllers, respectively. The system, thus, 
overcomes the heuristic instability of the 
conventional methods and improves 
operational robustness. A limitation is 
presented in the dependency on a trained 
environmental envelope and hardware 
validation. In future work, it will be focused on 
real-world deployment: first, by deploying the 
controller on hardware and experimentally 
validating it through operational aspects of 
nonlinearities and noise; second, by achieving 
online/adaptive learning to maintain 
performance under environmental drift. 
Further longer-term extensions involve 
enhancing the fault tolerance and extending the 
topology to hybrid renewables (PV–wind–
battery) structures. 

• Hardware validation: Emphasize plans for 
real-world testing. 

• Hybrid systems: Explore integration with 
wind/battery storage for scalability. 
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