

ISSN: 1813-162X (Print); 2312-7589 (Online)

Tikrit Journal of Engineering Sciences

available online at: http://www.tj-es.com

A Comprehensive Review of Reactive Carbon Dioxide **Removal and Utilization Techniques**

Ahmed A. Ali 🖲, Harith N. Mohammed 🖲, Safaa M. R. Ahmed 🗅 *

Chemical Engineering Department, College of Engineering, Tikrit University, Tikrit, Iraq.

Keywords:

CO2 removal; CO2 utilization; Climate mitigation; Atmospheric CO2 reduction; Environmental impacts.

Highlights:

- •The review explores the importance of CO2 removal and
- Classification of CO2 removal methods.
- Process techniques for CO2 removal and utilization were described.
- The integration between CO2 removal and energy was explained.
- Economic rules of CO2 reduction were reported.
- Challenges and opportunities in the field of CO2 removal were discussed.

ARTICLE INFO

Article history:

05 May 2024 Received Received in revised form 29 Aug. 2024 Accepted 20 Oct. 2024 Final Proofreading 25 Aug. 2025 Available online 29 Aug. 2025

© THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE. http://creativecommons.org/licenses/by/4.0/

Citation: Ali AA, Mohammed HN, Ahmed SMR. A Comprehensive Review of Reactive Carbon Dioxide Removal and Utilization Techniques.

Tikrit Journal of Engineering Sciences 2025; 32(4): 2226.

http://doi.org/10.25130/tjes.32.4.11

*Corresponding author:

Safaa M. R. Ahmed

Chemical Engineering Department, College of Engineering, Tikrit University, Tikrit, Iraq.

demands urgent action to address rising levels of atmospheric CO2. This article reviews reactive CO2 chemical, electrochemical, mineralization, carbonation, photo-catalysis, biological, membrane separation methods. It examines their classification, mechanisms, technological advancements, integration with renewable energy, and related economic and policy frameworks, providing insights for researchers, policymakers, and industry experts. The review aims to offer valuable insights to researchers, policymakers, and industry specialists in the field of climate change, providing a detailed summary of the current state of CDR and CDU technologies. It evaluates the mechanisms and processes involved in CO2 capture, highlighting recent technological innovations and their integration with renewable energy sources to ensure sustainability. The economic and policy dimensions of these technologies are also examined, emphasizing the need for supportive regulatory frameworks and financial incentives to foster up CO2 capture and utilization are thoroughly discussed, including issues of cost, scalability, and immense energy requirements of large-scale CO2 importance of operations and the finding solutions sustainable energy counterproductive emissions. It also addresses the of public awareness and participation in advancing these technologies and achieving tangible climate benefits. The study concludes by highlighting recent progress in reducing costs, enhancing effectiveness, and increasing investment in carbon dioxide removal (CDR) and carbon dioxide utilization (CDU) technologies. It also identifies areas needing further research, such as cost reduction, efficient solutions, and environmental impacts. This review provides a thorough assessment of both opportunities and challenges, advancing CDR and CDU technologies toward a sustainable future.

Abstract: The escalating threat of climate change removal and utilization techniques, including widespread adoption. Challenges related to scaling technological barriers. The review highlights the

مراجعة شاملة لتقنيات إزالة ثاني أكسيد الكربون التفاعلية والاستفادة منه

احمد عبدالله، حارث نوري محمد، صفاء محمد رشيد

قسم الهندسة الكيمياوية/ كلية الهندسة / جامعة تكريت / تكريت – العراق.

الخلاصة

يتطلب التهديد المتزايد والمتصاعد لتغير المناخ اتخاذ تدابير عاجلة وفعالة للتخفيف من ارتفاع مستويات ثاني أكسيد الكربون في الغلاف الجوي. تقدم هذه المقالة نظرة عامة شاملة على تقنيات إزالة ثاني أكسيد الكربون (CDR) واستخدامها (CDU) المستخدمة على نطاق واسع، مع فحص جدواها وكفاءتها واستدامتها. يتضمن الاستكشاف مجموعة متنوعة من الأساليب، بما في ذلك البيولوجية والكيميائية. الغرض من المراجعة هو تقديم معلومات قيمة يمكن أن تكون مفيدة للباحثين وصانعي السياسات والمتخصصين في الصناعة في مجال تغير المناخ، مع الهدف النهائي المتمثل في الحفاظ على الكوكب للجمهور المستهدف. وبهذه الطريقة، تساهم هذه الدراسة، من خلال ملخصها الموجز للأبحاث الحالية في CDR وCDR، في تقدم هذه التقنيات وإمكاناتها للاستخدام في مستقبل مستدام اجتماعيًا، وتقييم شامل للفرص والتهديدات لمواصلة تطوير هذه التقنيات. بالإضافة إلى الاقتراحات والتوصيات المفيدة للتحسين. علاوة على ذلك، يتم تناول الجوانب الاقتصادية والأثار السياسية المرتبطة بتقنيات إزالة ثاني أكسيد الكربون هنا، مع التركيز على الأطر التنظيمية الداعمة المطلوبة والحوافز المالية لتعزيز اعتمادها على نطاق واسع. كما تتم مناقشة دور التوعية والمشاركة العامة، مع تسليط الضوء على أهمية المشاركة المجتمعية في تحقيق تقدم ملموس. لا تزال العديد من تقنيات PCD و PCD والمشاركة المحرز في السنوات الأخيرة، والمعوالة التكافولوجية، والتي قد لا يجادل فيها هذا البحث. على الرغم من أنه يتضمن أيضًا رعبارات تتعلق مائتون أمحرز في السنوات الأخيرة، والنكافة، وزيادة الفعالية، ونمو الاستثمارات، إلا أنه يمكن للمرء أيضًا رؤية الاتجاهات التي تتعلق المحرز في السنوات الأخيرة، والمنائة للتكنولوجيات، والبحث عن حلول مستدامة وفعالة، والنظر بفعالية في القضايا البيئية المحتملة.

الكلمات الدالة: إزالة ثاني أكسيد الكربون، واحتجاز ثاني أكسيد الكربون، والتخفيف من آثار تغير المناخ، والحد من ثاني أكسيد الكربون في الغلاف الجوى، والتأثيرات البيئية.

1.INTRODUCTION

The increased concentration of Carbon dioxide (CO₂) in the atmosphere has emerged as a serious global issue, affecting climate change, oceanization, and ecosystem imbalance. Anthropogenic activities, such as the use of fossil fuels and industrial processes, the burning of fuel, and deforestation, among raised CO_{2} others. have emissions concentrations, which are currently at the highest levels they have ever been in recorded by history. From data Intergovernmental Panel on Climate Change (IPCC), the atmospheric levels of CO₂, the main GHG, have risen to almost 50% of their preindustrial level, paralleled by a rise in global temperature and a host of negative environmental consequences [1]. In response to this, scientists and engineers in the scientific and engineering fields have intensified their efforts in the quest to develop and implement carbon dioxide removal (CDR) techniques. All these strategies have the potential not only to reduce CO₂ concentration in the atmosphere or capture it and store it elsewhere, but also to reduce emissions. At the same time, Carbon Dioxide Utilization (CDU) technologies have emerged, with the main target being the use of captured CO2 to produce valuable goods, such as synthetic fuels, chemicals, and construction materials. This approach is beneficial because it reduces CO2 levels while simultaneously by creating utility producing useful commodities [2]. Reactive CO2 capture and conversion has been identified as one of the potential development paths in the CDR and technologies. Unlike conventional CDU methods that merely sequester CO₂, reactive approaches involve chemically transforming CO₂ into stable compounds or integrating it into chemical processes, thus offering a dual benefit: reducing emissions while manufacturing goods

in high demand. These techniques involve chemical, biological, and electrochemical processes, each with its own merits and drawbacks [3, 4]. Specifically, reactivity-based technologies that work on the principle of chemically fixing CO2 include chemical looping, mineral carbonation, and electrochemical reduction of CO2. For instance, mineral carbonation involves changing the mineral's physical and chemical structure using a method similar to the rock's weathering process, which forms stable carbonates, whereas electrochemical CO2 reduction captures CO2 and turns it into valuable products such as hydrocarbons or alcohols. Similarly, there are biologically based strategies, such as algae production, which utilize CO2 to produce biomass that will eventually be used in biofuels and other green products [5]. However, several difficulties persist in the realm of reactive CO₂ removal and utilization technologies, which have advanced considerably in recent years. These include high energy costs entailed in some processes, problems of scale-up, and the development of better and more efficient catalysts and materials for the accomplishment of reactions. In addition, the fact that the use of some of these technologies is still more applicable on a small scale, as large-scale deployment entails additional costs, and some technologies are still in the research phase [6]. The objective of this review is to present a thorough evaluation of the latest developments in reactive CO2 removal and utilization methods. It examines the fundamental ideas, the several technologies that have been created thus far, and their individual benefits and drawbacks. The evaluation also examines potential areas of overlap between various approaches and the future paths that these technologies need to take in order to become

more practical for large-scale applications. This study aims to advance knowledge of how reactive CO₂ removal and utilization might be crucial in tackling global climate concerns and advancing a circular economy by highlighting recent developments and successes.

2.IMPORTANCE OF CO2 REMOVAL

Carbon dioxide (CO₂) emissions resulting from increased human activity significantly impact the Earth's climate. The fossil fuel industry's energy production generates CO₂, leading to substantial research on mitigating these effects through CO₂ capture and storage technologies, including new or improved coal-fired power plants [7, 8]. From November 30 to December

11, 2015, the Paris climate conference was held at the Le Bourget Exhibition Centre. Nations have since implemented strict environmental regulations to raise public awareness and address the harmful effects of CO₂ and other greenhouse gases. Before the Paris conference, China pledged to peak CO₂ emissions around 2030 and aimed for a 60% to 65% reduction in CO₂ emissions per unit of GDP from 2005 to 2030. Additionally, China aims to source 20% of its primary energy consumption from nonfossil sources and increase its forest reserves by 4.5 billion cubic meters compared to 2005 [9, 10]. Since 1980, global surface temperatures have risen alarmingly, as shown in Fig. 1.

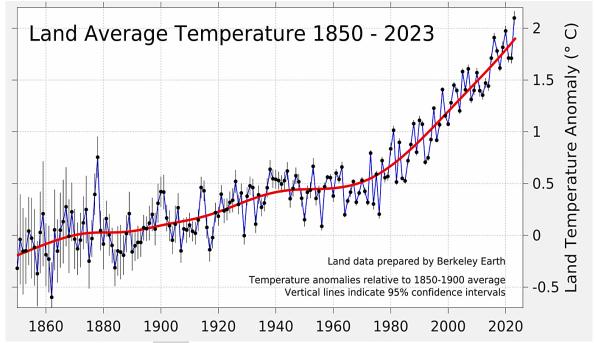


Fig. 1 Average Temperature Rise Since 1880 [11].

The international community will prioritize efforts to reduce CO_2 emissions and absorption in the coming decades. Thus, innovative technologies for reducing emissions and absorption will be a key focus [12]. To tackle climate change, sustainable energy sources and strategies to mitigate greenhouse gas emissions are crucial [13, 14]. Table 1 highlights the importance of CO_2 removal in various applications, with more details in the references. Moreover, they involve the

execution of policies and regulations that are specifically formulated to encourage the use of sustainable energy sources. An instance of this is the significant impact that the implementation of electric vehicles (EVs) can have on reducing greenhouse gas emissions associated with transportation [18]. However, it is imperative to acknowledge the positive and negative tendencies that accompany this transition [19].

Table 1 Examples of the Importance of CO₂ Removal.

Application	Importance	References
Climate Change Mitigation	CO ₂ removal is crucial for mitigating climate change by reducing the concentration of greenhouse gases in the atmosphere, which can help limit global temperature rise and its associated impacts.	[15]
Ocean Acidification	The magnitude of ocean acidification and the associated uncertainty at a specific stabilized temperature level can be determined by simulations that incrementally adjust GHG emissions to achieve the same stabilized warming level.	[16]
Carbon Capture and Storage (CCS)	Carbon capture and storage initiatives, which seek to prevent CO2 emissions from industrial processes and power plants from entering the atmosphere, rely heavily on CO2 removal technologies.	[17]

3.MECHANISMS AND PROCESSES OF **CO2 CAPTURE**

Commercial CO2 removal from ambient air began in the 1930s to prevent dry ice formation in cryogenic air separation facilities, which caused equipment fouling [20]. Since the 1960s, CO2 capture in the US and Canada has focused on CO₂-enhanced oil recovery (EOR). Marchetti first proposed the concept of CO2 capture and storage for mitigating CO2 emissions in 1977 [21]. A CO₂ capture system aims to produce a concentrated CO₂ stream for transport and storage or utilization. Direct transport of low-concentration CO₂ streams is impractical due to high energy and cost requirements. Thus, the choice of capture system depends on factors such as fuel type, gas stream pressure, and CO₂ concentration [22, 23]. While various reduction strategies exist, many are economically unfeasible. Given the ongoing reliance on fossil fuels and increasing global energy demand, carbon dioxide capture and storage (CCS) is a promising approach for mitigating CO₂ emissions [24, 25]. Figure 2 illustrates the three main technologies for CO₂ capture from fossil fuel combustion facilities [26]. Achieving a high capture efficiency from diverse industrial emission sources requires the selection of appropriate technologies; this is contingent on feed stream conditions (e.g., flue gas composition, stream temperature, gas flow rate, and CO₂ concentration, as well as economics), targeted production specifications (e.g., CO₂ purity and transport pressure), and

discharged standards (e.g., the presence of H₂S, SO_x , and NO_x compounds) [28]. Table 2 provides an overview of various mechanisms and processes for CO2 capture, along with specific examples, associated statistics, and references to scholarly articles supporting the information provided. DAC technologies are energy-intensive due to the direct extraction of CO₂ from the environment, contributing to approximately two-thirds of the technology costs. The capture and compression of CO₂ can increase the cost per watt-hour of energy from fossil fuel power by 21–91% [11]. DAC is most effective at point sources, such as extensive renewable or fossil fuel facilities [41]. Separation processes, including evaporation, drying, distillation, and crystallization, are vital in various industries and account for about 10-15% of global energy consumption [42]. Various methods for CO₂ capture, including sorbent, electrochemical, and membrane technologies, are used in DAC systems. Biological CO₂ capture is primarily achieved by plants. microbes, and microalgae. Figure 3 shows the bicarbonate pool's role in capturing CO2 for photosynthesis. Microalgae, which operate in high-pH environments and exhibit rapid growth, efficiently convert CO2 into biomass, though they require substantial land. Marine incubation offers a viable nature-based DAC approach, with microalgae demonstrating higher CO₂ conversion efficiency compared to terrestrial plants [43].

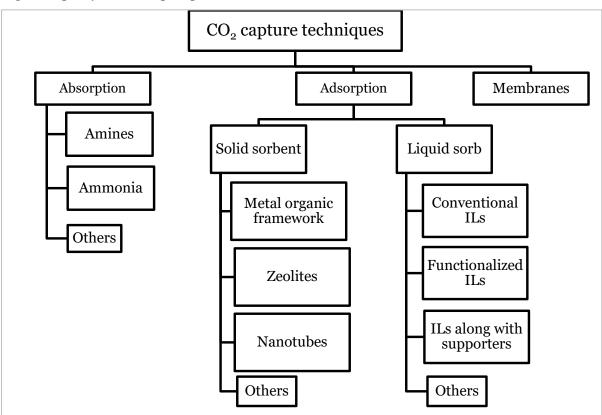


Fig. 2 Classification of CO₂ Capture Techniques [27].

Table 2 Mechanisms and Processes for CO₂ Capture.

Mechanism/Process	Examples	Statistics	Refs.
	Afforestation and reforestation	Forests sequester 2.4 billion metric tons of co ₂ annually	[29]
Biological Carbon Capture	Ocean fertilization	Estimated potential to sequester 1-2 billion metric tons of CO ₂ per year	[30]
	Bioenergy with carbon capture and storage (BECCS)	BECCS has the potential to remove 10 gigatons of CO_2 annually by 2050	[31]
	DAC using solid sorbents	Estimated cost of \$94-232 per ton of captured CO ₂	[32]
Direct Air Capture (DAC)	Amino acid salt solutions for DAC	Potential to capture CO ₂ at a cost of \$100-200 per ton	[33]
(DAC)	DAC with advanced membrane technology	Projected cost of \$100-200 per ton of captured CO ₂	[34]
	Post-combustion capture	Over 20 large-scale CCS facilities are in operation globally	[35]
Carbon Capture and	Pre-combustion capture	Has the ability to remove as much as 90% of carbon dioxide gas from IGCC power stations	[36]
Storage (CCS)	Oxy-fuel combustion capture	Up to 90% of CO ₂ emissions can be captured from oxy-fuel combustion processes.	[37]
	Industrial capture and storage	Estimated potential to capture over 7 billion metric tons of CO ₂ per year from industrial sources by 2050	[38]
Enhanced Weathering	Spreading crushed silicate rocks on land	Potential to sequester 1-4 billion metric tons of CO ₂ annually	[39]
	Accelerating natural weathering processes in minerals	Enhanced weathering could remove 0.5 -4 GtCO $_2$ per year by 2100	[40]

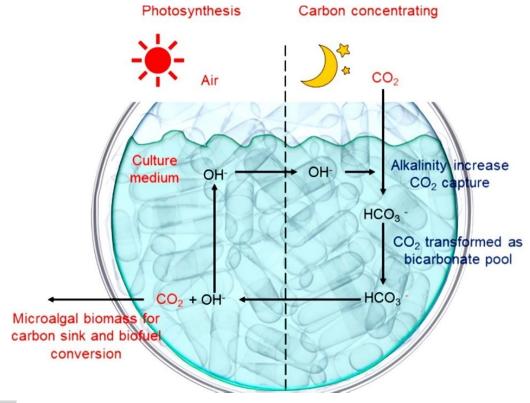


Fig. 3 Significance of the Bicarbonate Pool in the Effective Collection of CO₂ from the Atmosphere and the Quick Delivery of Carbon for Photosynthesis [41].

4.CLASSIFICATION OF REACTIVE CO2 REMOVAL APPROACHES

There are various approaches to categorizing reactive CO2 removal methods. One widely used categorization is based on the mechanism by which these methods remove CO2 from the atmosphere. Here are some common categories [44]:

4.1.Chemical Reaction Approach

Chemical reactions are used to capture and store CO₂, such as in carbon capture and storage (CCS), where CO2 is captured from

power plant emissions and stored underground, and in direct air capture (DAC), where chemicals bind and remove CO₂ directly from the atmosphere. A regenerable solvent can effectively absorb CO₂ post-combustion, producing a concentrated CO₂ stream for sequestration; however, significant energy is needed for solvent regeneration [27]. Monoethanolamine (MEA) is a common absorbent with a regeneration energy of 3.2-4.0 MJ per kg of CO₂ [45]. Using a phase change solvent that undergoes a phase transition after CO₂ absorption, forming a CO₂rich and a CO₂-lean phase, can reduce energy demand as only the CO₂-rich phase requires regeneration [46]. In chemical absorption, the exhaust CO2 reacts with a solvent to form a weakly bonded intermediate, which is restored by heating. The CO₂-containing gas reacts with the absorbent in a packed bed absorber column. The CO₂-rich absorbent is then regenerated in a stripper and recycled [47]. The net CO₂ emissions from the stripper are transferred to liquefaction, transportation, and storage. Amine-based solvents, such as MEA, are the most frequently used in chemical absorption due to their high CO2 absorptivity.

4.1.1.pH Swing

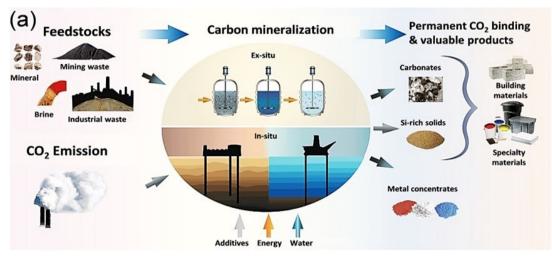
The pH swing approach enhances mineral carbonation rates by alternating between acidic and basic conditions. Magnesium and calcium dissolve more quickly in acidic environments, basic conditions favor carbonate precipitation [48]. Li et al. [49] demonstrated this method with serpentine, using NaOH to precipitate magnesium carbonate after an acid leaching phase with HCl. Effective carbonation was achieved by pre-treating serpentine at 650 °C, converting 98.8% of Mg²⁺ in the liquor, and producing stable hydro-magnesite (Mg5(CO3)4(OH)2(H2O)4) up to 450 °C. The gas pressure was unspecified, and the acids and bases were derived from electrolyzed ocean water. Kodama et al. carbonated steelmaking slag using a strong acid-weak base solution (HCl/NH₄⁺/NH₃) at various temperatures (40-90 °C), achieving up to 60% conversion. Ammonium chloride facilitated dissolution and ammonia byproduct formation, although the process was costly due to the need for NH3 recovery [50]. Rashid et al. [51] noted high energy consumption due to the need for water evaporation before compound recovery. Bu et al. [52] reported that bipolar electrodialysis at ambient temperatures in HCl/NaOH systems required 372-569 kWh/t of NaOH, reduced energy use compared to conventional methods. Stokreef et al. [53] found that NH4HSO4/NH4OH systems needed 1300 kWh/t CO2, but Sanna et al. [54] suggested that liquid-liquid extraction could cut energy consumption by 35% (845 kWh/t CO₂).

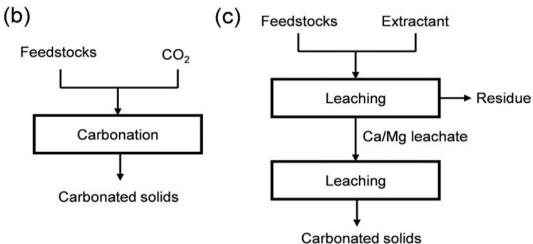
4.1.2.Feed Activation

Activation of feedstock enhances carbonation processes through thermal, mechanical, chemical, or hybrid methods. Emerging research on carbon mineralization [55, 56] has utilized feed activation [49, 57, 58], though its efficacy remains under-evaluated. Activation, while increasing surface area, is costly and energy-intensive. For example, up to 75% of the energy in carbonation processes is consumed by reducing feedstock particle size [59]. Alternative feedstocks, such as fly ash and

boiler bottom ash, may reduce this energy demand due to their fine particle size. Maroto-Valer et al. [60] assessed the carbonation potential of activated serpentine via chemical and thermal activation. Thermal activation at 300 °C and 650 °C had minimal impact on surface area, while steam activation at higher temperatures significantly improved carbonation conversion by 60% at 126 atm and 155 °C within one hour. Despite this, the process remains costly. Chemical activation with acids increased the surface area from 8 m²/g to 330 m²/g due to magnesium extraction, which, although not enhancing carbonation extent, reduced energy demands [61]. Carbon microstructures for membranes, typically produced by pyrolyzing thermosetting polymers at 500-1000 °C in the absence of oxygen, are enhanced when supported on porous substrates. These microstructures, with internal diameters ranging from less than 1 nm to several nanometers, allow for effective molecular sieving. Recent advances include the use of stacked graphene oxide nanosheets on a PEBA copolymer substrate, achieving a CO₂ permeability of 100 Barrer and a selectivity of 91 for CO₂/N₂ mixtures [62]. Additionally, single-wall carbon nanotubes show twice the CO₂ capacity of activated carbon [63].

4.2. Electrochemical Reduction **Approach**


The electrochemical reduction of CO2 is a promising approach for converting CO2 into value-added chemicals and fuels, thereby addressing both energy storage and carbon utilization challenges. This process typically involves the use of an electrocatalyst to facilitate the reduction of CO₂ at the cathode, while water oxidation occurs at the anode. Various products can be obtained depending on the electrocatalyst, including carbon monoxide formic acid (HCOOH), methanol (CH3OH), and hydrocarbons, such as ethylene (C2H4) and ethanol (C2H5OH) [64]. One of the most studied catalysts is copper, which is known for its ability to produce a wide range of and hvdrocarbons oxygenates. catalysts, particularly in their nanoparticle form, have demonstrated high selectivity and efficiency in converting CO2 to ethylene and ethanol, making them a focal point of research [65]. The reaction conditions, including the electrolyte composition, pH, and applied potential, significantly influence the selectivity and efficiency of the CO₂ reduction process. For instance, the use of ionic liquids as electrolytes has been shown to enhance the selectivity for CO and formic acid due to their ability to stabilize CO₂ intermediates [66]. Additionally, the development of gas diffusion electrodes has improved the mass transport of CO2 to the catalyst surface, resulting in higher current densities and enhanced reaction rates [67].


Despite the progress, several challenges remain in scaling up the electrochemical reduction of for industrial applications. challenges include the high overpotentials required to drive the reactions, the durability and stability of the catalysts, and the need for efficient separation and purification of the products. Advanced catalyst design, including the use of bimetallic and alloy catalysts, has shown promise in addressing some of these issues by reducing overpotentials and improving catalyst stability [68]. Furthermore, integrating renewable energy sources, such as solar or wind, with electrochemical CO2 reduction systems could provide a sustainable pathway for large-scale implementation [69].

4.3.Mineralization Approach

The processes involved in the mineralization of CO₂ from silicate ores are typically categorized as direct or indirect. In essence, direct carbonation involves a single stage of direct reaction between CO₂ and the mineral source, while indirect carbonation involves the decomposition of the process into several steps. Additional facets of the mineralization process that have been the subject of recent research endeavors aimed at enhancing reaction rates

through feed activation [70] employ diverse reactor technologies and investigate potential applications for carbonation products in industry, resale, and recycling. Additionally, these studies aim to enhance the economic viability of the mineralization process as a whole [71]. There are two separate applications for the carbonate compounds that are produced through the mineral carbonation of CO₂. These encompass both high-end low-volume uses and low-end high-volume uses. Nevertheless, to be considered commercially viable, these products must meet specific quality standards and specifications. Examples of such parameters include a reasonable particle size and a low level of contaminants [72]. Carbonate minerals are presently utilized in a variety of industrial applications (Figure 4). They have been discovered to be beneficial in the fabrication of paper and fiber, the pharmaceutical industry, the agricultural sector, and the production of refractory metals. The construction industry provides the most appropriate application opportunities for mineral carbonates and the overall reduction of CO₂ emissions [71]. Table 3 summarizes different mineralization techniques for CO2 removal.

Fig. 4 (a) Carbon Mineralization from Various Feedstocks to Different Products. Image Courtesy of Florent Bourgeois, Laboratoire de Genie Chimique; Au-Hung Park and Xiaozhou Sean Zhou, Columbia University. Process flow Charts of (b) Direct and (c) Indirect Carbonation [73].

Table 3 Mineralization Techniques for CO₂ Removal.

Mineralization Technique	Description	Refs.
Mineral Carbonation	The process involves the reaction of CO ₂ with metal oxides to produce stable carbonates, such as magnesium or calcium carbonates. The process can be executed with either industrial refuse materials or natural minerals.	[74]
Accelerated Weathering	Carbon dioxide is dissolved in water more efficiently by utilizing natural weathering processes, which result in the formation of carbonates. The methodology described above applies to silicate materials, such as serpentine and olivine.	[75]
Oceanic CO ₂ Sequestration	This technology provides a variety of benefits, such as the availability of marine storage sites, which are not the case with terrestrial sites, which are limited. As with terrestrial sequestration, marine sequestration is also capable of storing CO2 for an extended period of time due to the unique marine environment.	[76]
Biomimetic Mineralization	Draws inspiration from biological processes to develop synthetic materials that can efficiently capture and convert CO ₂ into stable minerals. Examples include using enzymes or bio-inspired catalysts for mineral formation.	[77]

4.4.Carbonation Approach 4.4.1.Direct Carbonation

There are two overarching approaches to direct carbonation: aqueous and dry gas-solid. Reducing the price of processing requires a better understanding of the processes that restrict the carbonation rate, which includes investigating the reaction at the particlereactant interface. The exothermic nature of the reaction is facilitated by thermodynamic advantage of carbonates over silicate minerals [78]. An essential direct aqueous carbonation route was proposed by the U.S. American National Energy Technology Laboratory (NETL). Sodium chloride and sodium bicarbonate are employed in this NETL process to improve the reaction kinetics. Additional process conditions are dependent on the feedstock. For example, wollastonite is carbonated at a temperature of 100 °C and a pressure of approximately 40 bar [79]. Supplementary cementitious materials (SCMs) or aggregates in concrete products can be produced from carbonate products that undergo direct carbonation [80].

4.4.2.Dry Gas-Solid Carbonation

Direct carbonation of dry gas and solids involves CO2 reacting with solid mineral cations, benefiting from heat recycling but often suffering from slow reaction rates [81]. Research, such as Larachi et al.'s in situ carbonation of chrysotile in dry environments with 10% H2O, showed that higher carbonation rates occur in the presence of water, with magnesium carbonate hydrate as the end product [82]. Cesium feed impurities also enhance chrysotile carbonation capacity [83]. Studies have explored using fly ash for CO₂ fixation through direct gas-solid or aqueous MC technology, noting that solid-to-liquid ratio, reaction time, pressure, and stirring speed are critical for stable carbonate formation [84]. While research on fly ash with high alkaline oxide content has increased, the carbonation process is significantly influenced by the type of calcium source in fly ash. Anhydrite particles in fly ash reduce carbonation efficiency if desulfurization residues are present [85].

Calcium from lime and portlandite reacts with CO₂ more quickly than other sources, and the presence of Na2CO3 enhances carbonation efficacy at 140°C and 20 bar [86].

4.4.3. Aqueous Carbonation

Aqueous mineralization schemes capitalize on the elevated rates of carbonation reactions that transpire within aqueous mineral sediment. The aqueous carbonation process route proposed by NETL [87] is widely regarded as a precisely defined route for mineral carbonation [81, 88]. As a result, it is frequently employed as a foundational process in investigations pertaining to other facets of carbonation. In recent studies, there has been a greater emphasis on scrutinizing the chemical activities that lead to silicate dissolution and carbonate precipitation, with the aim of refining these Maroto-Valer conditions. et al. [60] investigated the effect of feedstock activation on serpentine reaction kinetics using an aqueous method comparable to that of NETL. An additional investigation was conducted on the carbonation of olivine in water, focusing on the reaction interface and surface, with the formation of a layer of silica passivation that inhibited further carbonation [89]. In order to enhance carbonation, the study indicated that agitation or abrasive particles, such as quartz, were useful. These particles improved particleto-particle collisions, which in turn facilitated the exfoliation of the silica passivation layer. As byproducts, the steelmaking industry also produces a substantial quantity of slag. For each metric ton of wrought iron or steel, approximately 0.5-1 metric tons of slag are produced [90]. Initially, steel slag was considered a waste material and was disposed of in landfills. However, it is now primarily utilized as a cementitious and roadbed material to conserve space and prevent landfilling of [91]. The properties of steel slag are enhanced and stabilized after it undergoes carbonation, rendering it suitable for widespread use in construction materials [92]. The demand in the construction industry correlates with the potential utilization of materials steelmaking slag, which is valuable for various

applications, including nutrient recovery, CO₂ mineralization, wastewater treatment, and soil amendment [93]. Steelmaking slag, rich in calcium and magnesium, can sequester CO2 through mineral carbonation, converting CO₂ into carbonates [94]. This not only enhances the slag's properties but also supports its use in cement, concrete, and roadbed material [95], making CO2 fixation in slag a promising approach for both emission reduction and slag utilization.

4.4.4.Indirect Carbonation

Direct carbonation processes are generally slower [81]. To accelerate these processes, dividing them into smaller steps is beneficial. One such indirect method under investigation involves altering the solution's pH [96]. Indirect carbonation typically requires two steps: extracting magnesium and calcium ions and then reacting them with CO₂ to form carbonates. Successful implementation often depends on maintaining separation between these steps, as they require different pH conditions. This has led to methods such as two-stage or pH swing carbonation [97]. Sucrose has been identified as an additive that enhances vaterite formation. Studies on vaterite synthesis using sucrose often employ either solution mixing or CO2 bubbling methods. For example, Konopacka-Łyskawa et al. [98] used NH3 to promote CO2 absorption and incorporated various saccharides, finding that 90 mM sucrose yielded 90% vaterite. Dickinson and McGrath [99] achieved 85% vaterite with a 3 wt% sucrose concentration using the CO2 bubbling method. P'erez-Villarejo et al. [100] synthesized 100% vaterite with 67% sucrose, though the crystals were irregular and small. Liu et al. [101] noted that sucrose accelerated vaterite formation, but the mechanism remains Additionally, Yao et al. [102] investigated the impact of sucrose and bovine serum albumin (BSA), finding that either 20% sucrose or 5% sucrose with BSA facilitated vaterite formation.

4.5.Photo-Catalysis Approach

Photo-catalysis for CO₂ removal leverages lightdriven chemical reactions to convert CO2 into valuable products or to enhance CO2 capture. One prominent approach involves the use of semiconductor photocatalysts, such as titanium dioxide (TiO2) and zinc oxide (ZnO), which, under UV or visible light, can facilitate the reduction of CO₂ into hydrocarbons or alcohols [103]. These photocatalysts operate by generating electron-hole pairs upon light excitation, which then participate in redox reactions to convert CO₂ [104]. For instance, TiO₂ has been extensively studied due to its stability and photocatalytic efficiency, achieving CO2 reduction with high selectivity for methanol and methane [105]. Advances in doping TiO₂ with elements, such as nitrogen or

creating composite materials with carbonbased supports, have shown improved visible light activity and increased CO2 conversion rates [106].

4.6.Biological Approaches

Biological approaches for CO₂ removal leverage natural processes to capture and convert CO₂. One prominent method is the use of microalgae in photobioreactors, which absorb CO2 during photosynthesis and convert it into biomass. This process not only reduces CO2 levels but also produces valuable by-products such as biofuels and animal feed [107]. Another approach involves soil carbon sequestration, where CO₂ is captured and stored in soil organic matter through the use of enhanced land management practices [108]. Additionally, reforestation and afforestation initiatives utilize trees and plants to sequester CO2 from the atmosphere through natural growth processes [109]. These methods contribute to mitigating climate change by removing CO2 and enhancing carbon sinks. Microalgae cultivation has been particularly noted for its efficiency in CO2 uptake and biomass production [110], while soil and forest management practices offer long-term carbon storage solutions [111]. Table 4 outlines the mechanisms by which microorganisms fix CO₂ from the air. Microbes utilize both photosynthetic and nonphotosynthetic pathways to convert atmospheric CO2 into biomass and energy [112]. The advantages of microbial CO₂ capture include efficient bioremediation, high biofixation rates, diverse product formation with minimal genetic changes, and applicability in bioprocessing. This includes bacteria, fungi, yeast, and algae [113]. Recent research focuses on converting CO₂ into value-added products using advanced biological and non-biological technologies. For instance. microbial electrochemical technologies. such as microbial electrosynthesis (MES) and microbial carboncapture cells (MCC), can capture CO2 while treating contaminated water and recovering valuable products. Plant-microbial fuel cells (P-MFC) utilize atmospheric CO₂ photosynthesis and consume contaminants for plant growth [114]. Microalgae, in particular, can significantly reduce CO2 emissions and have a CO2 fixation rate 10-50 times higher than terrestrial plants [115], making algalbased treatment a promising technology for mitigating global climate change. On the other hand, a catalyst is necessary to facilitate a CO2 reduction reaction in electrochemical and photoelectrochemical technologies. As the final carbon product (CO₂) is a thermodynamically stable molecule, an elevated activation energy is necessary to reduce CO_2 to CO_2 – (E° = – 1.90 V vs SHE at pH = 7.0) [116]. Additionally, CO₂ reduction is linked to the hydrogen evolution

reaction (HER), a cathodic half-reaction that takes place at a lower overpotential ($E^{\circ} = o V vs$ SHE at pH = 7.0) [116]. An ideal electrocatalyst is necessary to overcome this side reaction in order to accomplish CO2 reduction, as it can lower the activation barrier of the CO₂ reduction reaction in comparison to HER [117]. Thus, it is feasible to achieve CO2 reduction with increased reaction rates, even in the presence of minimal overpotential.

Table 4 Microbial Carbon Sequestration Through Various Pathways [112].

Input	Pathways	Enzymes	Organism
CO ₂	Reductive pentose phosphate cycle (CCB) or Calvin-Benson-Bassham cycle	RuBisCO	Mycobacteria, plants, algae, cyanobacteria, and proteobacteria
CO ₂	Reductive citric acid cycle (rTCA)/Reductivetricarbocylic acid cycle/Arnon Buchanon Cycle/Reverse Krebs cycle	PEP carboxylase 2Oxoglute rate synthase IsocitrateDehydrogenase Pyruvate synthase	Quaficae bacteria, green proteobacteria, sulfur bacteria.
CO ₂	Wood-Ljungdahl pathway (W-L) or Reductive acetyl-CoA pathway	The dehydrogenase formate Formylmethanofuran Dehydrogenase (FMFD) and carbon monoxide dehydrogenase (CODH)	Euryarchaeota, proteobacteria, plantomycetes, spirochaetes
CO_2	3-Hydroxypropionate 4- hydroxybutyrate cycle (3HP-4HB)	Acetyl-CoA/Propionyl-CoA carboxylase	Aerobic crenarcheota
CO_2	Dicarboxylate 4hydroxybutyrate cycle (DC-4HB)	Pyruvate synthase PEP carboxylase	Anaerobic crenarcheota
CO_2	3-Hydroxypropionate bi-cycle (3- HP)/FuchsHolo cycle	Acetyl-CoA carboxylase Propionyl-CoA carboxylase	Green non-sulfur bacteria

4.7. Membrane Separation Approach

Membrane separation technologies offer a promising method for CO2 removal by selectively permeating CO₂ through membrane while allowing other gases to pass through. This approach leverages various types of membranes, including polymeric, inorganic, and mixed-matrix membranes. Polymeric membranes, such as those made from polyimides or polysulfones, are commonly used due to their relatively low cost and ease of fabrication. However, their performance can be limited by factors such as plasticization and lower selectivity for CO2 [118]. Inorganic membranes, including zeolite and ceramicbased membranes, provide high thermal and chemical stability, making them suitable for harsh operating conditions, but this often comes at a higher cost and complexity [119].

4.8.Other Technologies 4.8.1.Flow Reactor

Two studies by Huntzinger et al. [120] investigated gas-solid combustion of residuecemented kiln particles in a packed bed reactor at ambient conditions. The packed bed was filled with compacted kiln dust, and CO2containing gas was introduced through it. Variations in water content and concentration were tested, resulting in calcium carbonate production with conversions similar to batch reactors. However, further research is needed to separate the effects of feedstock composition from reactor operating conditions [121]. The plug-flow behavior of fixed beds, which maintains the reaction front's position, allows for a shorter reactor and reduced pressure loss compared to traditional designs. However, challenges include the interconnected nature of reactors, preventing pressure swings, and the difficulty of moving large particles between reactors. Indirect heating is less efficient due to lower mixing in moving beds compared to fluidized beds, leading to a complex temperature swing [122]. The "Hypersorption" process [123], proposed by Clyde Berg in 1946, aimed to recover propane, ethane, and ethylene from refinery off-gases. SRI International and Advanced Technology Materials, Inc. (ATMI) have recently introduced a new moving bed reactor design to reduce the energy penalty of postcombustion CO2 capture. This completes the CO2 capture cycle by passing a sorbent through an adsorber, transition, desorber, dehydrator, chiller, and lift [124].

4.8.2.Fluidized Bed

Increasingly, studies are looking at the use of fluidized bed technology for carbonation, since it seems to be an economical way to speed up reactions at lower temperatures and pressures. The University of Wyoming is conducting an investigation into a patented mineralization method that combines flue gas CO₂ and combustion fly ash [125]. A fluidized bed was utilized, consisting primarily of fly ash (SiO₂, CaO, Fe₂O₃, or MgO, with a concentration of 1050%), and combustion gas flow (N2 with 2-6% CO2). This endeavor is inaugural attempt reportedly the carbonation and simultaneous direct extraction of CO₂ emissions at their source. Transporting CO₂ is a significant expense associated with implementing large-scale carbon capture and storage, which will likely necessitate the construction of a network of conduits. The elimination of conveyance requirements would result in a significant reduction in expenses. An investigation by Fagerlund et al. [126] found that magnesium hydroxide is in its nascent stages of carbonation in a supercritical state within a fluidized bed under CO2 conditions (600 °C, 100 bar). The authors assert that the

carbonate product layer, which serves as the rate-limiting diffusion barrier, will undergo decomposition and eventual elimination within the fluidized bed due to particle-particle collisions and interactions. This process will lead to ongoing exposure of unreacted core material to CO2, ultimately increasing the maximum conversion level that can be achieved. The carbonation of Mg (OH)2 was experimentally investigated by Fagerlund and Zevenhoven in a fluidized bed kiln [127]. Fluidized beds provide improved mass and heat transfer, necessitate less mass to be heated, produce dry and easier-to-handle products, and use substantially less energy than wet slurry columns. Nevertheless, in order to achieve substantial conversion yields in dry conditions, it will be necessary to operate at elevated temperatures and pressures. These conditions present an economic challenge for the mineralization of serpentine using fluidized beds. The operation of a fluidized bed with moist mineral particles, at atmospheric pressures and moderate temperatures, can capitalize on the benefits of both slurry columns and fluidized beds [128].

4.8.3.Oscillatory Baffled Reactor

Using an oscillatory baffled reactor (OBR) for CO2 removal has shown significant promise due to its enhanced mass transfer and mixing capabilities. The design of the OBR, which incorporates periodic baffles and oscillatory flow, creates a unique environment that significantly improves the dissolution of CO2. According to Pereira et al. (2014), the multiorifice oscillatory baffled column design facilitates increased contact between the gas and liquid phases, leading to more efficient CO2 absorption [129]. Ahmed et al. (2018) underscored the importance of OBR design in mass transfer enhancement, showing that the

reactor's oscillatory nature significantly boosts gas-liquid mass transfer rates [130]. Avila et al. (2022) detail the design and performance characteristics continuous of highlighting their versatility and efficiency in various applications, including CO2 capture [131]. The oscillatory motion, combined with strategically placed baffles, creates vortices and eddies that disrupt boundary layers and enhance mass transfer. This is particularly advantageous for CO2 removal, as it enables faster and more efficient capture of CO2 from flue gases or ambient air. The work by Heidaryan et al., (2023) further supports these findings, demonstrating that CO2 capture operations can be markedly enhanced in an OBR due to the intensified mixing and mass transfer rates [132]. Overall, the integration of oscillatory baffled reactors in CO2 removal processes offers a robust solution to enhancing mass transfer and reaction rates, making them a valuable asset in industrial CO₂ capture and sequestration efforts. The synergy between oscillatory motion and baffled design ensures high efficiency and effectiveness, positioning OBRs as a critical technology for addressing carbon emissions and combating climate change.

5.TECHNOLOGICAL INNOVATIONS IN **DIRECT AIR CAPTURE**

The six major technical approaches to CO₂ removal and sequestration are as follows: direct air capture, coastal blue carbon, terrestrial carbon removal and sequestration, bioenergy with carbon capture and sequestration (BECCS), carbon mineralization, and geological sequestration. According to the National Academies of Sciences (2018) [133], Direct Air Capture (DAC) is the most extensive carbon removal technique among the six different approaches listed in Table 5.

Table 5 Technological Innovations in Direct Air Capture.

Tuble 3 Teenhological Innovations in Directini Captare.			
Technological Innovation	Description	Reference	
Carbon Engineering's Direct Air Capture	This technology uses a series of chemical reactions to capture CO ₂ from the air and convert it into a concentrated stream for utilization or storage.	[134]	
Climeworks' Direct Air Capture	Climeworks has developed a direct air capture technology that utilizes a filter material to absorb CO ₂ from the air.	[135]	
Global Thermostat's Direct Air Capture	Global Thermostat's technology involves using large-scale adsorption systems to capture CO ₂ from the atmosphere. The captured CO ₂ can be used for various purposes, such as fuel production or industrial processes.	[136]	
Skytree's Direct Air Capture	Skytree's technology uses a proprietary resin material to selectively capture CO ₂ from the air. The captured CO ₂ can be utilized in various applications, including carbon-neutral fuels and materials.	[137]	
Amino Acid Salt Solutions for DAC	Amino acid salt solutions have been developed as a promising solvent for capturing CO ₂ from the air due to their high selectivity and low energy requirements.	[138]	
DAC with Advanced Membrane Technology	Advanced membrane technology has shown potential for separating CO ₂ from air by utilizing selective membranes that allow the passage of CO ₂ while blocking other gases.	[34]	

These technological innovations in direct air capture demonstrate promising approaches to efficiently remove CO₂ from the atmosphere, offering potential solutions for addressing climate change. There is considerable ambivalence policymakers among and individuals seeking innovative new technologies. Concerning land use, each of the aforementioned technical approaches has its own set of advantages and disadvantages. DAC attracts considerable interest because, unlike BECCS and the Coastal Blue method, it does not impose size restrictions in terms of hectares or proximity to a coastal area [139]. DAC can capture CO2 directly from the air using contactors featuring a substantial surface area to enhance air contact, without the need for arable land. The captured CO₂ is subsequently discharged and stored. This is accomplished by employing liquid or solid sorbents. DAC can also assist with emissions that are challenging to prevent or originate from distributed sources [139]. The annual emissions from the iron-steel industry (11%), concrete (8%), transportation (24%), and wildfires (0.8%) are among the significant contributors. Furthermore, the highest vertical concentration of CO₂ in the atmosphere, 420 ppm, is approximately 1.5 kilometres above the Earth's surface. Nearly 4 kilometres into the atmosphere, concentration of CO₂ is approximately 0.5 percent lower [140]. DAC (Direct Air Capture) plants at sea level can effectively extract large quantities of atmospheric CO2. Currently, 19 DAC plants worldwide capture about 10,000 tonnes of CO2 per year. In the U.S., a plant with a capacity of 1 Mt of CO2/year is under development [139]. To remove 25 GtCO2 by 2030, an estimated 1,250 DAC plants, each capturing 1 MtCO2/year, would be needed, assuming carbon capture and storage increases from 0.0385 Gt/year to 20 Gt/year [141]. This estimate assumes linear growth; however, DAC technology may experience exponential growth similar to other emerging technologies. Each 1 Mt of CO2/year plant requires about 0.2 km2 of land, equivalent to 28 soccer fields. Current DAC technologies require 1-7 tonnes of water per tonne of CO₂ captured, potentially increasing to 13 tonnes with 30% humidity and monoethanolamine absorption [142]. These land and water needs significantly impact the

feasibility and location of DAC plants. Currently, the economic feasibility of CO2 sequestration in geological formations largely depends on its use for enhanced oil recovery (EOR) [143]. However, industrial CO2 utilization remains minimal compared to the 32 Gt/yr emitted globally. Like point source capture technologies, DAC's commercialization relies on utilizing captured CO2. The future looks promising, with potential CO2-derived products valued at approximately \$5 trillion [144]. Despite this, DAC facilities face competition from other CO2 capture methods and natural sources, which often have cost advantages. Nonetheless, DAC facilities are favored for their scalability and ability to be located near CO₂ consumers, reducing transportation costs [145]. Large fans draw in the surrounding air, which is subsequently heated and treated with a chemical sorbent liquid) to extract CO_2 . As demonstrated, this CO₂ is subsequently sequestered or utilized in other industries [145]. The captured CO₂ from the DAC could be utilized in agriculture, food, beverages, synthetic fuels, and even subterranean sequestration. This gives the DAC a broad market. Figure 5 illustrates the present state of DAC plants globally, in addition to Carbon Capture and Storage (CCS) establishments that capture carbon dioxide at its source, such as industrial and thermal power plants. CCS facilities are frequently integrated into industrial processes to mitigate emissions [141]. The dimensions of the DAC facility in Figure 6 are determined by the thermal energy source and the sorbent type utilized [142]. In addition to solid and liquid solvents, Plants can harness a diverse range of thermal energy sources, such as photovoltaic, geothermal, and others.

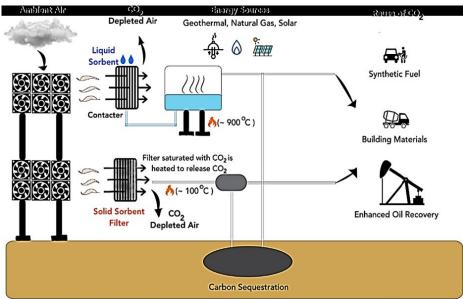


Fig. 5 CO₂ Captured from Air Using Liquid and Solid Sorbent DAC Plants, Storage, and Reuse [139].

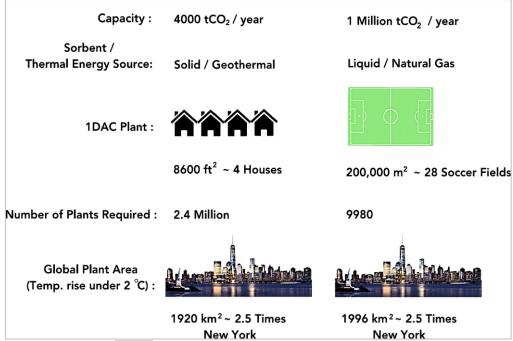


Fig. 6 DAC Plant Land Area Requirement [139].

6.INTEGRATION OF CO2 REMOVAL WITH RENEWABLE ENERGY

The utilization of renewable energy, the capture and storage of carbon dioxide, and additional technological advances to improve the efficiency of fuel and electricity have been identified as critical components in the implementation of strategies and routes to achieve the net-zero emission goal [146]. Consequently, the integration of their technologies would present an extraordinary prospect for attaining the intended state of netzero energy output. The consumption of fossil fuels accounts for an estimated 90 percent of carbon dioxide (CO₂) emissions worldwide. Fossil fuel-fired power facilities are

considered the most substantial among these sources [147]. As industrial activities and energy demand continue to rise, it is unlikely that the combustion of fossil fuels for energy production will cease. However, CO₂ capture and storage (CCS) technologies (Figure 7) could offer a viable alternative for the continued use of fossil fuels in a more sustainable and environmentally friendly manner. Numerous initiatives have been suggested to mitigate carbon dioxide emissions, with CCS being regarded as the most feasible technological alternative, projected to account approximately 19% of all CO2 reduction measures by 2050 [148].

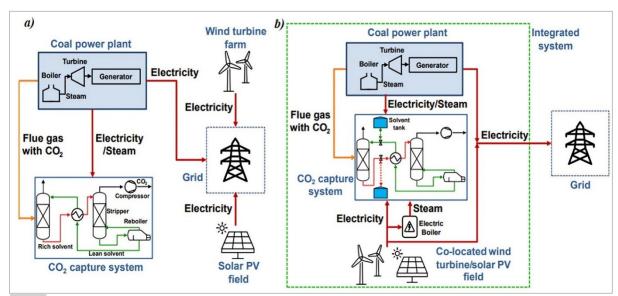


Fig. 7 Two Paradigms of Integrated Power Generation, CO₂ Capture, and Renewable Energy Systems. (a) Conventional, Non-Integrated System Configuration, and (b) Integrated System Configuration [149].

Recently, there has been talk of combining CO₂ collection with renewable energy sources to lessen the impact on power plants' energy bills. This is in response to the growing demand for more diverse power systems that incorporate renewable technology. Economic factors usually dictate that a removal efficiency of 85-95% is adequate, even though solvent-based absorption has the capability to completely eliminate CO2 in the combustion process for energy power stations and other industrial sectors [150]. The residual quantity of carbon dioxide (CO₂) is released into the atmosphere. The concentration of CO₂ in the atmosphere will continue to rise as it mixes with CO₂ from mobile and other sources that are harder to mitigate. Therefore, in order to achieve a net-

emission target, negative-emission technologies, such as bioenergy combined with carbon capture and storage (BECCS) and direct air capture (DAC), continue to play a crucial role [151-154]. These methods also require further consideration before carbon capture from large, significant stationary sources is implemented. In fact, the atmospheric CO2 content is relatively low, making the DAC process much more energy-intensive. In light of this, it is critical to adopt a sustainable energy source option to ensure it can contribute to achieving net-zero or negative emissions. Thus, by combining CO2 capture technology with renewable energy sources, it may be possible to reach neutral or negative emission goals (Table

Table 6 Integration of CO₂ Removal with Renewable Energy examples

CO ₂ Removal - Renewable	Key Findings	References
Energy		
Direct Air Capture (DAC) powered by Solar Energy	The process's carbon footprint can be reduced and its sustainability improved by powering direct air capture systems with solar energy.	[158]
Bioenergy with Carbon Capture and Storage (BECCS)	BECCS combines bioenergy production with carbon capture and storage, offering a way to remove CO ₂ from the atmosphere while generating energy.	[29]
Wind-Powered Carbon Capture and Utilization	Utilizing wind energy to power carbon capture and utilization processes can create a sustainable cycle of energy generation and CO ₂ removal.	[159]
Hydrogen Production from Renewable Sources with Carbon Capture	Producing hydrogen from renewable sources and capturing the associated CO ₂ emissions can contribute to decarbonizing industrial processes.	[160]

The primary disadvantages of renewable energy sources are their low power density and intermittent supply [161]. Power generation methods that combine renewable energy sources with more traditional methods hold greater potential for effectiveness, especially when considering the dual objectives of increasing the proportion of renewable energy and decreasing carbon emissions [162]. By incorporating renewable energy alternatives into CO₂ capture technologies, the adverse effects of energy penalties may be alleviated, and the capture process's sustainability may be improved. Renewable energy sources have the potential to provide a direct energy supply for CO₂ capture processes, thereby partially mitigating the energy demand incurred by power plants for such processes [163]. Various renewable energy sources can be combined with CO₂ capture technologies thermochemical. electrochemical. photochemical, thermophysical, and biological These technologies methods. are developing, each with distinct advantages and limitations. This research focuses on select review articles that summarize integration options [164]. While many carbon capture methods are well-known, this article primarily lists these technologies and examines renewable integration pathways in more detail. Space constraints prevent covering every published study, but interested readers can explore the listed publications and related

technologies [164]. Calcium looping, a notable CO2 capture process, is explored for solar energy integration, featuring high operating temperatures (650-670°C for carbonation and 850-950°C for calcination) and requiring external energy due to its endothermic nature (178 kJ/mol) [165]. Previous studies have explored the integration of solar energy for carbon capture and storage [166, 167]. Strategies for incorporating renewable energy into CO2 capture technologies are lacking, often focusing on solar power with coal-fired plants. As CO₂ emissions targets extend to hard-to-control sectors, such as heavy industry and transportation, innovative methods for integrating renewable energy are needed [168]. Negative emission solutions, such as Direct Air Capture (DAC), are crucial for approaching netzero goals [164]. While solar thermal carbon capture has been widely studied [163, 169, 170], most reviews focus on coal-fired plants, neglecting other renewable options. Effective and affordable integration methods are for sustainability and essential public acceptance. Fluidized beds offer improved efficiency over wet slurry columns but require high temperatures and pressures for optimal conversion. Operating them with damp mineral particles at moderate temperatures combines the benefits of both systems [164]. Cohen et al. (2010) assessed the feasibility and impacts of using solar energy for CO2 capture [171]. Parvareh et al. [163] explored various configurations to integrate solar thermal energy power plants implementing postcombustion capture (PCC), including: (1) generating steam with solar thermal energy for the PCC reboiler; (2) using solar energy to heat feed water or produce high-pressure steam for the turbine or boiler; and (3) integrating solar thermal energy with a retrofitted PCC power plant to supply the PCC reboiler with steam [164]. Manaf et al. (2016) extensively examined the modeling, design, and optimization of integrating a solar-thermal plant with a PCCretrofitted power plant to minimize CO2 capture costs [172].

7.ECONOMIC AND POLICY FRAMEWORKS IN CO2 REDUCTION

Multiple researchers have identified a growing recognition among regions in the Eurozone and significance regarding the international trade in advancing sustainable power and structural reforms Consequently, there has been an upsurge in the adoption of renewable energy sources in Asia other parts of the world. implementation of financial resources in an economic manner has resulted in numerous benefits for resource efficiency. Monetary authorities will have a substantial impact on combating climate change and promoting nonpolluting energy sources such as wind power. Entrepreneurial portfolios should include ecological investments in order to mitigate the effects of pollution and global warming. Diverse methods in which climate risk may impact investment decisions are possible. Green trading strategies include alternative solution consumer lending, investment in renewable energy facilities (e.g., via project finance), and venture funding in renewable technology [174]. These strategies incorporate both synergistic antagonistic screening mechanisms. However, the parameters governing specific financial enterprises and the requirements for environmentally sustainable investments remain ambiguous. Utilizing the term "climate policy" to overstate the actual impact of their company on the environment is an improper application of the term "collateralized debt obligations." The primary accountability for the environmental monitoring and reporting of an organization typically rests with financial issuers institutions and The [175].environmental impacts of various government creditors are unreliable due to potential inherent conflicts of interest among lenders, purchasers, and specific objective providers. Transparency and consistency of indications are critical for investors and rating agencies in order to direct investment opportunities towards debtors who possess the capability to successfully implement the transition to a lowcarbon economy. Conversely, some academics hold the view that economic integration

facilitates the attainment of carbon neutrality to the maximum degree feasible. Financial integration, in their view, allows companies to more effectively monitor their environmental impact and adopt cutting-edge low-carbon technologies [176, 177]. As an approximation for inclusive funding, consider how economic development affects the ecological degradation of the top 15 polluters. This indicates that carbon dioxide emissions and economic development are negatively correlated. Technical innovation that alleviates energy poverty and reduces carbon dioxide emissions might help bring about a decrease in carbon emissions by way of financial integration. In their investigation into the impact of economic integration on energy poverty alleviation in Ghana [178], they found that enhancing the nation's financial integration could potentially result in the eradication of energy poverty. There is evidence linking energy poverty to the greenhouse gas impact as reported by Chien et al. [179]. John and Deinde [180], and Zhao et al. [181-183], who also reported identical findings to ours. Economic integration can help nations minimize their carbon footprint by reducing poverty. In addition to aforementioned linear relationship, financial inclusion and the greenhouse effect might also exhibit a nonlinear correlation. In their study, Weimin et al. [184] utilized the environmental Kuznets curve (EKC) to investigate the presence of an inverted U-shaped correlation between global carbon emissions and economic integration. To put it simply, economic integration and carbon dioxide emissions in China have an opposite relationship. Additional research by Yin et al. [185] has provided support for this conclusion. Nevertheless, the impact of economic integration on carbon emission reductions in the space sector, specifically in China, is often underestimated in academic research. Limited research, especially in China, has been devoted to examining the carbon ramifications of financial integration. In addition, numerous specialists in the field fail to consider this particular CO2 collection method. The China Comprehensive Financial Consolidation Index examines the impact of financial consolidation on carbon emissions across various regions of the country by utilizing gender-specific tabular data spanning years 2004 to 2018. Subsequent investigations will additionally center on the impact of energy efficiency fluctuations on the correlation between carbon emissions and economic inclusion. Policymakers will now be motivated to implement modifications to the current energy consumption pattern response to the increasing energy demand paradigm. Nevertheless, the economic growth pattern, which is primarily driven by fossil fuelbased energy consumption, may be adversely affected by any abrupt or overnight changes in the energy consumption pattern. Consequently, policymakers may implement a phased energy transformation strategy that facilitates the transformation of energy consumption patterns without negatively impacting economic growth. Sectors with a higher price elasticity of demand for crude oil should be prioritized for substitution with crude oil during the initial phase. These sectors may be provided with renewable energy solutions at a pro-rata rate from the government, with a specific interest rate holiday period. This would allow the firms to bear the implementation cost of these solutions without any significant impact on their revenue stream. During this phase, the government will incur specific fiscal losses due to the interest rate holiday mechanism.

Nevertheless, these losses can be progressively recouped during the second phase. Sectors with a reduced-price elasticity of demand for crude oil and fossil fuel-based energy should be prioritized during the second phase. In order to provide solutions for firms operating in these sectors, policymakers should implement a differential pricing mechanism. The price differential should be determined by the carbon footprint of the firms. This differential pricing mechanism can be interpreted as a Pigouvian Taxation mechanism, which is designed to internalize the negative environmental externalities that these sectors emit [186]. Here is a summary of previous research on economic and policy frameworks for CO2 reduction, organized in Table 7.

Table 7 Previous Research on Economic and Policy Frameworks for CO₂ Reduction.

Research Topic	Key Findings	References
Carbon Pricing Mechanisms	Carbon taxes and cap-and-trade systems can effectively incentivize emission reductions and promote clean technologies.	[187]
Renewable Energy Subsidies and Incentives	Financial incentives such as feed-in tariffs can significantly promote the adoption of renewable energy sources.	[188]
Energy Efficiency Standards and Regulations	Energy efficiency standards and building codes play a crucial role in reducing energy consumption and CO ₂ emissions.	[189]
Technological Innovation and Research Funding	Government funding and research grants contribute to the development and deployment of low-carbon technologies.	[190]
International agreements and Cooperation	International agreements such as the Paris Agreement facilitate global coordination on CO ₂ reduction efforts.	[191]

8.CHALLENGES AND ISSUES

Carbon dioxide removal (CDR) and carbon dioxide utilization (CDU) are two critical approaches in addressing climate change and reducing greenhouse gas emissions. However, both face significant challenges related to cost, scalability, and technological barriers.

8.1.Cost Challenges 8.1.1. High Initial Investment

Technologies such as Direct Air Capture (DAC) and Bioenergy with Carbon Capture and Storage (BECCS) require substantial upfront for capital investment infrastructure, equipment, and In facilities. addition, processes like converting CO2 into fuels, chemicals, or materials involve costly catalysts, high-energy inputs, and sophisticated processing equipment.

8.1.2. Operational Costs

The continuous operation of Carbon Dioxide (CDR) technologies substantial energy input, particularly for Direct Air Capture (DAC) systems, which must filter and extract CO2 from ambient air. DAC processes, such as chemical absorption or adsorption, are especially energy-intensive due to the low concentration of CO2 in the atmosphere (approximately 0.04%). This low concentration necessitates the processing of large volumes of air, leading to high electricity consumption and operational costs, including significant expenses related to the compression and regeneration of sorbents or solvents used in

the capture process [192, 193]. Furthermore, the utilization of captured CO2, whether for chemical synthesis, enhanced oil recovery, or mineralization, typically involves energyintensive reactions. These reactions often require high temperatures and pressures, further contributing to the overall energy demand and increasing operational costs [194]. For instance, converting CO2 into fuels or chemicals through catalytic processes demands not only energy but also the continuous supply of raw materials, catalysts, and other reagents, all of which add to the economic burden. In addition to energy costs, maintenance of CDR systems can be a significant financial drain. Components such as filters, membranes, and reactors require regular maintenance and replacement, further driving up operational expenses. The need for a continuous supply of raw materials, including water and specific chemicals for processes like aqueous carbonation or electrochemical reduction, imposes additional financial challenges. Moreover, the procurement and disposal of catalysts and other consumables are critical aspects that can substantially influence the cost-effectiveness of these technologies [195, 196].

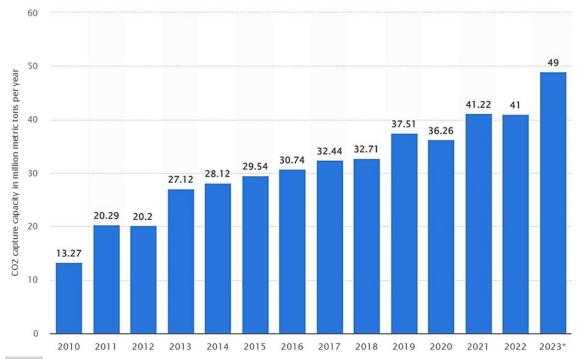
8.1.3. Economic Viability

The economic viability of carbon capture, utilization, and storage (CCUS) technologies is a critical concern in the global effort to mitigate climate change. Currently, the market price for

carbon credits-typically ranging between \$20 to \$50 per ton of CO2-often falls short of covering the full cost of capturing and storing CO2, which can range from \$50 to \$150 per ton, depending on the technology and scale of deployment. This discrepancy makes challenging for companies to justify large-scale investments in CCUS technologies without substantial financial incentives governments, such as subsidies, tax credits, or more robust carbon pricing mechanisms. Moreover, the economic feasibility of products derived from CO2 utilization hinges on their ability to compete with products made through conventional methods. For instance, producing synthetic fuels or chemicals from CO2 is generally more expensive than producing the same products from fossil fuels. This is due to the high energy requirements and complex processes involved in converting CO2 into valuable products. As a result, these CO2derived products often face significant market barriers unless there is strong regulatory support or a shift in market dynamics that favors low-carbon alternatives. To address these economic challenges, a combination of measures and technological advancements is essential. Governments can play a crucial role by implementing carbon pricing strategies that accurately reflect the social cost of carbon emissions, thereby incentivizing companies to invest in CCUS technologies. Additionally, continued research and development can help reduce the costs associated with CO2 capture and utilization, making these technologies more competitive in the long term [197-201].

8.2.Scalability Issues

Scaling up carbon dioxide (CO2) capture, utilization, and storage (CCUS) operations necessitates the development of extensive infrastructure, encompassing not only the technology for capturing CO2 but also the systems required for its transportation and secure long-term storage. The infrastructure significant, involving challenge is construction of pipelines that can transport CO2 from capture sites to storage locations, which are often geologically secure underground reservoirs. These pipelines must be designed to handle large volumes of CO2 under high pressure, ensuring safety and efficiency across potentially vast distances. Additionally, identifying and developing secure geological storage sites, such as depleted oil and gas fields or deep saline aquifers, is crucial. These sites must undergo rigorous evaluation to ensure their capacity to store CO2 over long timescales without leakage, which is a significant technical and regulatory hurdle. Large-scale utilization of CO2 further complicates the scaling process, as it requires extensive manufacturing and processing


facilities capable of handling and converting significant volumes of CO2 into valuable products. These facilities must be designed to operate at an industrial scale, which can be logistically challenging due to the need for consistent CO2 supply, raw materials, and energy. The energy required to capture and store CO2 at scale is immense, often leading to concerns about the sustainability of such efforts. The energy intensity of CO2 capture, particularly when employing technologies like chemical absorption, is high, necessitating the development of energy-efficient processes and the integration of renewable energy sources. If the energy used in CCUS operations comes from fossil fuels, the process risks becoming counterproductive, as the emissions generated could offset the benefits of CO2 capture. To address the increased energy demands of scaling up CO₂ utilization processes, it is imperative to identify and implement sustainable and cost-effective energy sources. Renewable energy sources such as solar, wind. and geothermal power offer promising alternatives, but integrating these into CCUS operations on a large scale presents challenges related to the variability, storage, and distribution of energy. Moreover, the transition to renewable energy must be carefully managed to avoid unintended emissions that could undermine the climate benefits of CO2 capture and utilization. This dual challenge of energy demand and sustainability highlights the need for continued innovation in both CO2 capture technologies and energy systems, as well as supportive policies and incentives to drive the adoption of low-carbon solutions at scale. Addressing these challenges is critical for the successful deployment of CCUS as a key strategy in mitigating climate change, as highlighted by various studies and industry reports [110, 197].

8.3. Technological Barriers 8.3.1.Technological Barriers: Efficiency, Performance, Storage, and Longevity

Improving the efficiency of CO2 capture technologies to capture more CO2 per unit of consumed is crucial. technologies often have limitations in terms of capture rates and energy efficiency. In addition, developing catalysts and processes that efficiently convert CO2 into valuable products remains an ongoing challenge. Current technologies often face limitations in terms of conversion rates and selectivity. Ensuring that captured CO2 can be stored securely and for long durations without leakage is a significant technological challenge. Advanced monitoring and verification technologies are needed to ensure the integrity of storage sites. Additionally, developing stable and durable products from CO2 utilization that can store

carbon for extended periods without releasing it back into the atmosphere is essential. Decarbonization via CDUS represents potentially effective avenue for the amelioration of climate change. Notwithstanding this, in order to optimize the efficacy and viability of these technologies, a number of obstacles and prospects must be considered. A significant obstacle is the exorbitant expense linked to CCS technologies

(Figure 8). Due to the combination of substantial infrastructure requirements, high energy and capital demands, and economic impracticability, these technologies may be unsuitable for a variety of industries [202-204]. Moreover, there is still a lack of comprehensive understanding regarding the long-term stability of CO₂ storage sites, which presents a potential risk of leakage and consequent damage to the environment [205-207].

Fig. 8 Capture Capacity of Operational Commercial Carbon Capture and Storage (CCS) Facilities Worldwide from 2010 to 2023 [208].

An additional obstacle that must be addressed is the scarcity of appropriate CO₂ storage locations in specific areas [209, 210]. For instance, regions characterized by dense populations or restricted land resources might lack the geological formations essential for the efficient storage of CO₂ [211]. Implementing CCS technologies also necessitates substantial regulatory and policy support, in addition to public acceptability, which can be challenging to attain [156, 204, 212]. However, numerous opportunities are also presented by the CDUS (Figure 9). The progression and integration of these technologies possess the capacity to incentivize inventive thinking, facilitate the establishment of fresh sectors, and produce employment opportunities [213, 214]. The utilization of CO₂ in the production of valuable goods may also contribute to the development of a more sustainable and circular economy [215-217]. In addition, the adoption of CCS technologies can facilitate the reduction of global emissions targets and aid in mitigating the environmental impact of fossil fuel consumption [156, 218]. In order to maximize the capabilities of these technologies, it is

imperative to thoroughly evaluate opportunities and challenges that are linked to decarbonization Ongoing via CDUS. investigation and advancement, in addition to policy and regulatory support, are imperative in order to surmount the obstacles and completely realize the advantages of these methodologies. The thermodynamic stability of C=O bonds and the rapid deactivation of catalysts continue to pose an open challenge for the majority of CO₂ transformation technologies in achieving high CO₂ conversion. The processes operate under high temperatures/pressures, or with excess overpotentials, or using catalysts with low availability and high costs (e.g., noble metals and ionic liquids), despite the fact that good conversion efficiencies are reported (≥60%) for reforming, hydrogenation, carboxylation, and electrochemical technologies. As a result, additional research is necessary to identify new catalysts that exhibit enhanced stability and activity while operating at reduced costs and under more favorable operational conditions. It is also necessary to clarify the mechanisms of CO₂ activation and/or electron transfer during CO₂ conversion processes, particularly for plasma catalysis, photochemical reduction, non-photosynthetic, and electrochemical reduction, in order to identify and control the various steps in elementary reactions, thereby

overcoming the limitations of CO₂ conversion [219]. Table 8 below summarizes most of the challenges and opportunities.

Table 8 Most Challenges and Opportunities

Topic	Challenges	Opportunities	References
Technological Advances	High costs and energy requirements for CO ₂ removal methods. Lack of scalability for some technologies.	Research and development to improve efficiency and reduce costs. Collaboration with industries for innovation.	[158, 220]
Policy and Regulation	Limited policies and incentives to support CO ₂ removal. Lack of international cooperation on carbon reduction.	Advocacy for government support and implementation of carbon removal policies. International agreements for carbon reduction.	[221-223]
Public Awareness	Limited public understanding of CO ₂ removal technologies. Skepticism and resistance to new environmental approaches.	Education and awareness campaigns to inform the public about the importance of CO ₂ removal. Engagement with communities to build support.	[224, 225]
Environmental Impact	Potential environmental risks associated with CO ₂ removal methods, such as land use and mineral extraction.	Sustainable practices and monitoring to minimize environmental impact. Integration of CO ₂ removal with ecosystem restoration efforts.	[29, 226]
Economic Viability	Uncertain business models and market demand for CO ₂ removal. Limited financial incentives for investment.	Development of carbon markets and financial mechanisms to create demand for CO ₂ removal. Integration of carbon removal with corporate sustainability goals.	[227-229]

9.CASE STUDIES OF SUCCESSFUL CO2 REMOVAL IMPLEMENTATIONS

Petra Nova - United States: Texas, USA, is home to the CCS project Petra Nova. It can remove as much as 90% of carbon dioxide gas from a coal-fired power station's emissions by employing post-combustion carbon capture technology. Improved oil recovery is achieved by injecting the collected CO2 into oil fields via a pipeline. With this initiative, we can sequester up to 1.6 million tonnes of carbon dioxide equivalent per vear [230]. Sleipner – Norway: The Sleipner project, situated in the North Sea, is the initial offshore CCS project in the world. The procedure involves injecting captured CO₂ from the processing of natural gas into a deep salt aquifer for long-term storage. With an

annual capacity of up to 1 million tonnes of CO₂, the project has been operational since 1996 [231]. Canada. An annual capacity of one million tonnes of CO2 is captured through the utilization of post-combustion carbon capture technology at a bitumen upgrader facility. Following pipeline conveyance, the captured CO₂ is injected for storage into a deep saline aguifer. Effective as of 2015, the project has been operational [232]. Germany – Ketzin: The Ketzin initiative was a carbon capture and storage (CCS) pilot project in Germany. Carbon dioxide was pumped into a saltwater aguifer for the purpose of storage. From 2008 to 2013, the program was operational, and it stored up to 67,000 metric tons of carbon dioxide [233].

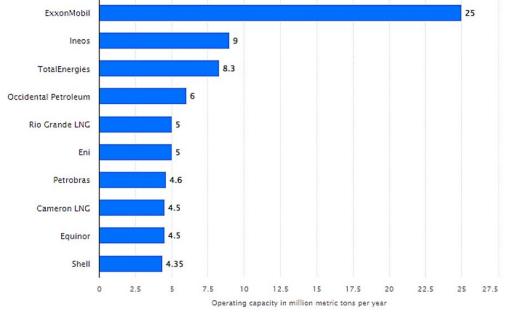


Fig. 9 Leading Carbon Capture, Use, and Storage (CDUS) Companies Worldwide in 2020, by Operating Capacity (in Million Metric Tons of CO₂ Per Year) [234].

Carbfix - Iceland: Iceland is home to the carbon-capturing and storing project known as Carbfix. Mineralization is the method by which CO2 is captured and stored. Subterranean basaltic rock formations are injected with a mixture of captured CO2 and water, where it undergoes a chemical reaction with minerals to generate steady carbonates. The annual storage capacity of the facility is 4 million tonnes of CO₂ [235]. Carbon Engineering – Canada: Carbon Engineering is a for-profit DAC that has been around since 2009 and counts Bill Gates & Murray Edwards among its backers. It is possible to extract about one tonne of carbon dioxide (CO₂) per day from a pilot facility in British Columbia, Canada, which has been running since 2015. According to economic research conducted between 2015 and 2018, the cost of removing CO₂ were \$94-232 per metric ton. It uses a solution of potassium hydroxide to react with CO2, creating potassium carbonate, and then works in tandem with Grevrock to convert concentrated CO₂ into synthetic fuels [236]. Climeworks – Switzerland: Since May 2017, Climeworks has maintained a DAC plant of industrial scale in Hinwil, Switzerland, where it annually captures 900 tonnes of carbon dioxide. Through the use of heat generated by a nearby trash incineration plant, the facility increases harvests from surrounding greenhouses of vegetables and decreases energy consumption. Capturing one kilogram of CO₂ requires approximately \$600. Climeworks and Reykjavik Energy have formed a partnership for the Carbfix project in Hellisheidi, Iceland, which mineralizes CO2 injected deep underground into basaltic bedrock in conjunction with a geothermal power facility [236]. Global Thermostat, a privately held organization established in 2010, located in New York, United States, eliminates dissolved CO₂ from the atmosphere via carbon substrates coated with amine-based sorbents. Their capacity for annual initiatives ranges from 40 to 50,000 tonnes, and their Huntsville facility is reportedly operating at a cost of \$120 per tonne. Global Thermostat has formed partnerships with a gasoline business headquartered in DAC, including ExxonMobil and Coca-Cola, for the procurement of CO2 for beverages [236]. Soletair Power - Finland: A firm called Soletair Power was founded in 2016. It uses DAC to improve indoor air quality by

removing CO₂ from buildings. For every 400 ppm of CO₂ eliminated, cognitive performance may be improved by 20%. An industrial base material and a synthetic renewable fuel are both made from captured CO₂. In order to create synthetic methane from buildings' collected carbon dioxide, A Powerto-X demonstration unit was developed in collaboration with Wartsila and Q Power in preparation for the 2020 Dubai Expo [236]. Prometheus Fuels -Santa Cruz, United States: Prometheus Fuels, a 2019 startup based in Santa Cruz, California, United States, specializes in DAC technology for the conversion of atmospheric CO2 into aviation fuel and petrol with zero net carbon emissions. Electrocatalysis is employed to convert carbon dioxide into alcohols, which are subsequently through processed carbon nanotube membranes to produce fuels. The procedure makes sole use of renewable electricity, culminating in the combustion of fuels that are carbon-neutral [236]. The first commercial facility to utilize Blue Planet Systems' patentprotected carbon mineralization process is currently being planned and constructed by San Francisco Bay Aggregates. The plant will permanently deposit CO₂ in synthetic limestone aggregate through mineralization, which will be collected from the adjacent Los Medanos Energy Center. SF Bay Aggregates is at the vanguard of the development of this paradigmshifting technology and will supply carbonnegative aggregate to Bay Area projects by 2022 [237]. A temporary departure area was constructed at San Francisco International Airport using Blue Planet technology. MC and Blue Planet will conduct a feasibility study on the prospective use of the technology in Silicon Valley until the fiscal year 2021. Subsequently, the partners intend to make the technology commercially available [238]. A pilot initiative has been initiated by Blue Planet and Sulzer to reduce CO₂ emissions and reshape the cement industry into a sustainable one. Sulzer Chemtech, the industry leader in separation technology, and mixing is currently constructing an efficient and effective carbon capture unit at Blue Planet's pilot facility in Pittsburgh. This unit will enable the production of high-quality products when reacted with captured CO₂ [239]. Table Comprehensive data, including the CO₂ capture capabilities of multiple companies.

Table 9 Detailed Information of Various Companies with CO₂ Capture Capacities and Operational Status [240].

Status [240]	J•				
Company	Project	Country	CC (tons of CO ₂ / year)	Equivalent Annual Emissions of Passenger Vehicles	Technology
Occidental Petroleum	Permian Basin CCF	USA	90,00,000	1.9 million	Post-combustion
Air Products	Port Arthur CCS project	USA	10,00,000	213,000	Cryogenic distillation
Chevron	Gorgon Project	Australia	40,00,000	850,000	Pre-combustion
ExxonMobil	Gorgon Project LaBarge CCS project Sleipner Project	Australia USA Norway	10,00,000	213,000	Various
Total	Northern Lights project	France	50,00,000	1 million	Post-combustion
Equinor	Sleipner Project Northern Lights project	Norway	50,00,000	1 million	Post-combustion
Shell	Quest project	Canada	10,00,000	213,000	Post-combustion
Mitsubishi Heavy Industries	Petra Nova project	Japan	16,00,000	341,000	Post-combustion
Carbon Clean Solutions	Multiple projects	India	10,00,000	N/A	Various
SaskPower	Boundary DamCarbonCapture and Storage project	Canada l	10,00,000	213,000	Post-combustion
Carbon Engineering	Pilot Plant	Canada	~365	~80 passenger vehicles	DAC with potassium hydroxide solution
Climeworks	DAC Plant	Switzerl	900	~197 passenger vehicles	DAC with waste heat utilization
Global Thermostat	Various Projects	USA	40-50,000	Varies	DAC with amine-based sorbents and carbon sponges

10.FUTURE PROSPECTS AND **EMERGING TECHNOLOGIES**

We are optimistic about CDUS's future. From 2021 to 2026, the worldwide market for capturing and storing CO₂ is projected to rise at a CAGR of 11.7%, reaching \$6.9 billion by 2026. The main factors propelling this expansion are stricter government rules and policies aimed at reducing greenhouse gas emissions [241, 242]. The CDUS is also anticipated to become more efficient and cost-effective as a result of technological improvements. An essential part of studying how to use CO2 is coming up with innovative ways to transform it into useful products, such as fuels, chemicals, and construction materials. The possibility of employing carbon dioxide (CO₂) as a feedstock in the generation of renewable energy is also the subject of ongoing research [243, 244]. As an example, carbon dioxide can be utilized as a starting material for the cultivation of microbes or algae that produce biofuels [245]. Research into CO₂ sequestration is currently focused on improving the dependability and security of geological storage sites and investigating alternative sequestration technologies, such as ocean storage and mineralization. Ionic liquids and metal-organic frameworks are examples of emerging materials and technologies that are showing promise for CO₂ capture in the future [246-250]. While CDUS has many obstacles, the future is bright. Establishing legal frameworks to guarantee the efficacy and safety of CO₂ storage sites is essential, as is the public's support for and substantial investment in largescale initiatives. Additional methods and

technologies must be created in order to improve the cost-effectiveness and efficacy of CDUS [236]. Ongoing CDUS research has a key emphasis on improving capture technology. existing capture technologies, Many specifically, capture after combustion systems, incur high energy costs, which can reduce the general effectiveness of power stations and manufacturing operations. A significant number of scholars are aiming for more efficient and less expensive capture methods. We aim to increase the rates of CO₂ capture while decreasing the energy requirements of these operations. In this respect, promising new technologies have emerged, such as cryogenic separation and systems based on membranes. Potentially using less energy than conventional absorption methods, membranebased systems isolate CO₂ from other gases through the use of selective membranes. In order to efficiently extract CO2, cryogenic separation requires lowering gases to very low temperatures. Both the performance and the price of CDUS systems could be improved by these developments, which would make them more attractive for large-scale deployment [236].

11.CONCLUSIONS

The present article offers a thorough examination of the most recent scientific developments, modification strategies, and the maturation, cost, market, and consumption of a variety of technologies. Furthermore, it offers a comprehensive examination of research trends and global CO₂ utilization initiatives. Lastly, the challenges and prospective research directions are addressed. The following points summarize the essential findings and emphasize the main trends of CO₂ technologies:

- 1- It is essential to develop a diverse array of mitigation and adaptation strategies that consider the current climate situation in order to achieve the 1.5 °C targets by the end of the century.
- 2- The potential of mineral carbonation technologies in the short term is particularly promising, particularly in the context of concrete building materials. The primary reason for this is the significant and continuous demand for concrete, as well as the combined advantage of enhancing material strength while sequestering CO₂ for an extended period. The primary goal of enhanced oil recovery is not the permanent storage of CO₂, and it is driven by the desire to minimize costs by utilizing naturally sourced CO2. As a result, it may be perceived as less exhilarating. It is uncertain whether it is feasible to expand the CO2 storage capacity of enhanced oil recovery sequestration sites to their maximum capacity in the near future, despite their immense capacity for CO₂.
- 3- The prepared review indicates that the preponderance of the commercial, largescale CDUS facilities that are currently operational are associated with natural gas processing and utilize CO₂.
- **4-** Further research and development are required to identify innovative methods for CO₂ removal and to improve the efficacy and affordability of current approaches. In order to achieve significant reductions in atmospheric CO2 levels and mitigate climate change, it may be necessary to implement a diverse array of CO₂ removal technologies and strategies.
- **5-** The implementation of carbon capture on a large scale is untenable due to its prohibitively expensive development. The implementation of carbon pricing mechanisms, such as a cap-and-trade system or a carbon levy, could serve as a financial incentive for companies to invest in these technologies. At present, the market does not entirely recognize the advantages of removing CO2 from the atmosphere. The cost of fossil fuels remains low, and there is a dearth of robust economic incentives for the development and deployment of CO₂ removal technologies.
- 6- The competitiveness of CO₂ removal technologies can be enhanced through policy interventions, such as carbon pricing mechanisms. By increasing the cost of fossil fuels and encouraging the development of healthier technologies, they can create a

level playing field. The free market cannot solely drive the adoption of CO₂ removal technologies. In order to expedite the development and deployment of these technologies, require we financial incentives and policy support.

Overall, the development and deployment of CO2 removal technologies are essential for addressing climate change and transitioning to a sustainable future. Therefore, policy support incentives financial are crucial. Governments can harness the potential of these technologies and establish a more sustainable and cleaner world by establishing the appropriate conditions. In general, there is a significant interest in carbon capture, whether for storage or utilization, and research efforts are gaining momentum.

ACKNOWLEDGEMENTS

The authors are grateful for the financial support towards this research by the Chemical Engineering Department, College Engineering, Tikrit University. Postgraduate Research Grant (PGRG) No.TU.G/2022/HIR/MOHE/ENG/(8282-7-3).

REFERENCES

- [1] Saleh SR, Wiheeb AD. Kinetic Study of Carbon Dioxide Reaction with Binding Organic Liquids. Tikrit Journal of Engineering Sciences 2019; **26**(1): 26-32.
- [2] Klaus SL, Sarah B, Jürg MM, Bob Z. The Urgency of the Development of CO2 Capture from Ambient Air. Proceedings of the National Academy of Sciences 2012; 109(33): 13156-13162.
- [3] Aresta M, Dibenedetto A, Angelini A. The Carbon Dioxide Revolution: Catalysis for Carbon Capture and Utilization. Chemical Reviews 2014; **114**(3): 1709-1742.
- [4] Megan CF, Zhe H, Dwarakanath R, Eric BD, Yat Ly, Sarah EB, Simon HP, Joshua AS. Reactive CO₂ Capture: A Path Forward for Process Integration in Carbon Management. Joule 2023; 7(4): 631-651.
- Mac DN, Paul SF, Nilay S, Geoffrey CM. [5] The Role of CO2 Capture and **Utilization in Mitigating Climate** Change. Nature Climate Change 2017; 7(4): 243-249.
- [6] Kafi M, Hamidreza Sanaeepur, Abtin Ebadi Amooghin. **Grand Challenges** in CO₂ Capture and Conversion. *Journal of Resource* 2023; **1**(1): 45–60.
- [7]Figueroa JDF, Timothy P, Sean M, Howard S, Rameshwar D. Advances in CO2 Capture Technology-the US Department of Energy's Carbon **Sequestration** Program.

- *International Journal of Greenhouse Gas Control* 2008; **2**(1): 9–20.
- [8] Pineda ITC, Chang Kyoung Kang, Yong Tae. CO2 Gas Absorption by Ch3oh Based Nanofluids in an Annular Contactor at Low Rotational Speeds. International Journal of Greenhouse Gas Control 2014; 23: 105–112
- [9] Chengping CX, Zhang. A Study on the Construction of China's Carbon Emissions Trading System. Energy Procedia 2011; 5: 1037–1043.
- [10] Zhang NZ, Xiaoyang Pan, Zhen Zhang, Zhien. A Brief Review of Enhanced CO2 Absorption by Nanoparticles.

 International Journal of Energy for a Clean Environment 2018; 19(3-4): 211–226
- [11] Berkeley Earth. **Global Temperature Report for 2023**. 2024. Available from: https://berkeleyearth.org/global-temperature-report-for-2023/.
- [12] Pan ZZ, Li Z, Zhien S, Liyan C, Shujun. Thermodynamic Analysis of Kcs/Orc Integrated Power Generation System with Lng Cold Energy Exploitation and CO2 Capture. Journal of Natural Gas Science and Engineering 2017; 46: 188–198.
- [13] Ravindranath NHS, Ravindranath A, Sathaye JA. Climate Change and Developing Countries. Springer; 2002.
- [14] Nunes LJJE. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. *Environments* 2023; 10(4): 66.
- [15] Masson-Delmotte VZ, Pörtner P, Roberts HO, Skea D, Shukla J, Pirani PR, Moufouma-Okia A, Péan W, Pidcock C. Summary for Policymakers of IPCC Special Report on Global Warming of 1.5°C. 2018.
- [16] Terhaar J, Frölicher TL, Joos FJERL.
 Ocean Acidification in EmissionDriven Temperature Stabilization
 Scenarios: The Role of Tcre and
 Non-CO2 Greenhouse Gases.
 Environmental Research Letters 2023;
 18(2): 024033.
- [17] Zheng YH, Xiaoyi W, Hewu W, Michael Z, Shaojun Ma, Dong W, Binggang Wu. Well-to-Wheels Greenhouse Gas and Air Pollutant Emissions from Battery Electric Vehicles in China. Mitigation and Adaptation Strategies for Global Change 2020; 25: 355–370.
- [18] Murshed MA, Zahoor Al, Shabbir M, Haider R, Abdul D, Vishal. Reinvigorating the Role of Clean

- Energy Transition for Achieving a Low-Carbon Economy: Evidence from Bangladesh. Environmental Science and Pollution Research 2021; 28: 67689–67710.
- [19] House KZB, Antonio C, Manya VN, Ernst AW, Jennifer H, Howard J. Economic and Energetic Analysis of Capturing CO2 from Ambient Air. Proceedings of the National Academy of Sciences 2011; 108(51): 20428–20433.
- [20] Ma JL, Lin W, Haofan Du, Yi Ma, Junjie Z, Xiaoli W, Zhenliang. Carbon Capture and Storage: History and the Road Ahead. *Engineering* 2022; 14: 33–43.
- [21] Metz B, Davidson O, De Coninck H, Loos M, Meyer L. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press; 2005.
- [22] Nord LO, Bolland O. Carbon Dioxide Emission Management in Power Generation. John Wiley & Sons; 2020.
- [23] Holechek JL, Geli HM, Sawalhah MN, Valdez RJS. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?. Sustainability 2022; 14(8): 4792.
- [24] Arachchige USP. Carbon Dioxide Capture by Chemical Absorption: Energy Optimization and Analysis of Dynamic Viscosity of Solvents. Ph.D. Thesis; 2019.
- [25] Hafeez SS, Tayeba P, Elena M, George A, Elsa Z, Zhien Al, SM C, Achilleas. CO2 Capture Using Membrane Contactors: A Systematic Literature Review. Frontiers of Chemical Science and Engineering 2021; 15: 720-754.
- [26] Wu YX, Jianhong M, Kathryn S, Geoffrey WF, Weiyang W, Yundong. Recent Advances in Carbon Dioxide Capture and Utilization with Amines and Ionic Liquids. Green Chemical Engineering 2020; 1(1): 16–32.
- [27] Abdel-Rahman ZA, Abdullah ZA. Utilization of CO2 in Flue Gas for Sodium Bicarbonate Production in a Bubble Column. Tikrit Journal of Engineering Sciences 2019; 26(2): 28–38.
- [28] Smith PD, Steven JC, Felix F, Sabine M, Jan G, Benoit K, Etsushi J, Robert BC, Annette K, Elmar. Biophysical and Economic Limits to Negative CO2 Emissions. *Nature Climate Change* 2016; **6**(1): 42–50.
- [29] Boyd PWJ, Timothy L, Cliff SB, Stéphane B, Edward AB, Ken OC,

- Kenneth HC, JJ DB, Hein JWF, Michael.

 Mesoscale Iron Enrichment
 Experiments 1993-2005:
 Synthesis and Future Directions.

 Science 2007; 315(5812): 612-617.
- [30] Fuss SL, William FC, Max WH, Jérôme C, Felix A, Thorben B, Tim OG, Wagner H, Jens K, Tarun. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environmental Research Letters 2018; 13(6): 063002.
- [31] Zeman FJEs. Energy and Material Balance of CO₂ Capture from Ambient Air. Environmental Science & Technology 2007; 41(21): 7558-7563.
- [32] Momeni, Arash M, Rebecca VA, Masood SZ, Ali S, Geoffrey WM, Kathryn A. Direct Air Capture of CO2 Using Green Amino Acid Salts. Chemical Engineering Journal 2024; 480: 147934.
- [33] Sanders, David FS, Zachary P, Ruilan R, Lloyd MM, James EP, Donald RF, Benny D. Energy-Efficient Polymeric Gas Separation Membranes for a Sustainable Future: A Review. Polymer 2013; 54(18): 4729–4761.
- [34] Goren AY, Dincer I, Gogoi SB, Boral P, Patel D. Recent Developments on Carbon Neutrality through Carbon Dioxide Capture and Utilization with Clean Hydrogen for Production of Alternative Fuels for Smart Cities. International Journal of Hydrogen Energy 2024; 79: 551–578.
- [35] Herzog HJJEE. Scaling up Carbon Dioxide Capture and Storage: From Megatons to Gigatons.

 Energy Economics 2011; 33(4): 597–604.
- [36] Rubin ES, Davison JE, Herzog HJ. The Cost of CO2 Capture and Storage.

 International Journal of Greenhouse
 Gas Control 2015; 40: 378-400.
- [37] Haszeldine RS, Flude S, Johnson G, Scott V. Negative Emissions Technologies and Carbon Capture and Storage to Achieve the Paris Agreement Commitments.

 Philosophical Transactions of the Royal Society A 2018; 376(2119): 20160447.
- [38] Renforth PJ. The Potential of Enhanced Weathering in the UK.

 International Journal of Greenhouse
 Gas Control 2012; 10: 229–243.
- [39] Beerling, David JK, Euripides PL, Mark RW, Peter E, Rafael MR, Phil S, Binoy A, Grace J, Rachael H, Christopher R. Potential for Large-Scale CO2 Removal Via Enhanced Rock

- **Weathering with Croplands**. *Nature* 2020; **583**(7815): 242–248.
- [40] Chowdhury SK, Yogendra S, Saket P, Shrey KS, Jitendra S. A Review on the Recent Scientific and Commercial Progress on the Direct Air Capture Technology to Manage Atmospheric CO2 Concentrations and Future Perspectives. Energy & Fuels 2023; 37(15): 10733-10757.
- [41] Erans MS-P, Eloy SH, Dawid PC, Zeynep R, David MM, Greg A. Direct Air Capture: Process Technology, Techno-Economic and Socio-Political Challenges. Energy & Environmental Science 2022; 15(4): 1360–1405.
- [42] Moreira D, Pires JC. Atmospheric CO2 Capture by Algae: Negative Carbon Dioxide Emission Path. Bioresource Technology 2016; 215: 371–379.
- [43] Curnow J. Carbon Dioxide Removal, Including Carbon Sequestration in Natural Systems. Environmental Science & Technology 2018; 52(5): 2554–2563.
- [44] Guo H, Li C, Shi X, Li H, Shen SJ.
 Nonaqueous Amine-Based
 Absorbents for Energy Efficient
 CO2 Capture. Applied Energy 2019;
 239: 725-734.
- [45] Zhang S, Shen Y, Wang L, Chen J, Lu Y. Phase Change Solvents for Post-Combustion CO2 Capture: Principle, Advances, and Challenges. Applied Energy 2019; 239: 876–897.
- [46] Jassim MN, Mohammed TJ, Karim AM. Experimental Investigation of CO2 Solubility in New Amine-Based Deep Eutectic Solvents. Tikrit Journal of Engineering Sciences 2024; 31(1): 262–277.
- [47] Galina NR, Arce GL, Maroto-Valer M, Ávila IJE. Experimental Study on Mineral Dissolution and Carbonation Efficiency Applied to Ph-Swing Mineral Carbonation for Improved CO2 Sequestration.

 Energies 2023; 16(5): 2449.
- [48] Li W, Li W, Li B, Bai ZJCER. Electrolysis and Heat Pretreatment Methods to Promote CO2 Sequestration by Mineral Carbonation. Chemical Engineering Research and Design 2009; 87(2): 210–215.
- [49] Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada KJE. Development of a New Ph-Swing CO2 Mineralization Process with a

- **Recyclable Reaction Solution**. *Energy* 2008; **33**(5): 776–784.
- [50] Rashid MB, E Farhang, F Oliver, TK Stockenhuber, M Kennedy. Application of a Concurrent Grinding Technique for Two-Stage Aqueous Mineral Carbonation. Journal of CO2 Utilization 2020; 42: 101347.
- [51] Bu J, Bai P, Sharratt PJ. Carbon Dioxide Capture with Regeneration of Salt. International Publication Number WO 2012; 50530:
- Stokreef S, Sadri F, Stokreef A, [52] AJCE. **Mineral** Ghahreman Carbonation of Ultramafic Tailings: A Review of Reaction **Mechanisms** and Kinetics. **Industry** Case Studies, Modelling. Chemical **Engineering** Journal 2022; 8: 100491.
- [53] Sanna A, Gaubert J, Maroto-Valer MMJCEJ. Alternative Regeneration of Chemicals Employed in Mineral Carbonation Towards Technology Cost Reduction. Chemical Engineering Journal 2016; 306: 1049–1057.
- [54] Haug TA, Kleiv RA, Munz IAJAG. Investigating Dissolution of Mechanically Activated Olivine for Carbonation Purposes. Applied Geochemistry 2010; 25(10): 1547–1563.
- [55] Lee MG, Ryu KW, Jang YN, Kim W, Bang J-HJMt. Effect of Oxalic Acid on Heat Pretreatment for Serpentine Carbonation. *Materials Transactions* 2011; 52(2): 235–238.
- [56] Alexander GM-V, Mercedes G, Parvana M. Evaluation of Reaction Variables in the Dissolution of Serpentine for Mineral Carbonation. Fuel 2007; 86(1-2): 273-281.
- [57] Dufaud F, Martinez I, Shilobreeva SJ. Experimental Study of Mg-Rich Silicates Carbonation at 400 and 500 °C and 1 Kbar. Chemical Geology 2009; 265(1-2): 79-87.
- [58] Krevor SC, Lackner KSJEp. Enhancing Process Kinetics for Mineral Carbon Sequestration. Energy Procedia 2009; 1(1): 4867–4871.
- Maroto-Valer MM, Fauth D, Kuchta M, Zhang Y, Andrésen JMJFPT. Activation of Magnesium Rich **Minerals** as **Carbonation** Feedstock Materials for CO_2 Sequestration. Fuel **Processing** Technology 2005; 86(14-15): 1627-1645.

- [60] Yang X, Gao L, Wu Y, Chen Y, Tong LJM. Extraction of Magnesium and Nickel from Nickel-Rich Serpentine with Sulfation Roasting and Water Leaching.

 Metals 2022; 12(2): 318.
- [61] Shen, Jie L, Gongping H, Kang J, Wanqin L, Kueir-Rarn X. Membranes with Fast and Selective Gas-Transport Channels of Laminar Graphene Oxide for Efficient CO2 Capture. Angewandte Chemie International Edition 2015; 127(2): 588-592.
- [62] Cinke M, Li J, Bauschlicher CW, Ricca A, Meyyappan MJ. CO2 Adsorption in Single-Walled Carbon Nanotubes. *Chemical Physics Letters* 2003; **376**(5-6): 761–766.
- [63] Zhouyang Yin, Shouheng S. Electrochemical Reduction of CO2 Catalyzed by Metal Nanocatalysts.

 Trends in Chemistry 2019; 1(8): 739-750.
- [64] Nitopi S, Scott B, Liu X, Engstfeld AK, Horch S, Seger B, Stephens I, Chan K, Hahn C, Nørskov JK, Jaramillo, Chorkendorff I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews 2019; 119(12): 7610-7672.
- [65] Zhang S, Kang P, Meyer.
 Nanostructured Tin Catalysts for
 Selective Electrochemical
 Reduction of Carbon Dioxide to
 Formate. Journal of the American
 Chemical Society 2014; 136(5): 1734–
 1737.
- [66] Verma S, Kim B, Jhong HR, Ma S, Kenis P. A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2.

 ChemSusChem 2016; 9(16): 1972–1979.
- [67] Li CW, Kanan MW. CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films.

 Journal of the American Chemical Society 2012; 134(17): 7231–7234.
- [68] Schreier M, Héroguel F, Steier L, Ahmad H, Luterbacher J, Mayer MT, Grätzel M. Solar Conversion of CO2 to CO Using Earth-Abundant Electrocatalysts Prepared by Atomic Layer Modification of CuO. Nature Energy 2017; 2(7): 17087.
- [69] Uliasz-Bochenczyk A, Mokrzycki EJ. Possible Applications of Energy Waste for Mineral Sequestration of CO2. Rocznik Ochrona Srodowiska 2011; 13: 1591–1603.

- [70] Alturki AJ. The Global Carbon Footprint and How New Carbon Mineralization Technologies Can Be Used to Reduce CO₂ Emissions. ChemEngineering 2022; 6(3): 44.
- [71] Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer M. A Review of Mineral Carbonation Technologies to Sequester CO₂. Chemical Engineering Journal 2014; 248: 1–19.
- [72] Lin J-Y, Garcia EA, Ballesteros FC, Garcia-Segura S, Lu M. A Review on Chemical Precipitation in Carbon Capture, Utilization and Storage.

 Sustainable Environment Research 2022; 32(1): 1–20.
- [73] Biava G, Depero LE, Bontempi EJSJoSS. Accelerated Carbonation of Steel Slag and Their Valorisation in Cement Products:

 A Review. Spanish Journal of Soil Science 2024; 14: 12908.
- [74] Vandeginste V, Lim C, Ji YJ.
 Exploratory Review on
 Environmental Aspects of
 Enhanced Weathering as a Carbon
 Dioxide Removal Method. *Minerals*2024; 14(1): 75.
- [75] Ling ZP, Junyu K, Bkangmo L, Shasha L, Xingjie G, Xin P, Maxim VK, Alexander NH, Yong Z. Current Situation of Marine CO2 Sequestration and Analysis of Related Environmental Issues. Fuel 2024; 366: 131288.
- [76] Montoya A, Sushko PV, Glezakou VA, Rousseau R, Lyubinetsky. Biomimetic Mineralization for CO2 Capture and Storage: Recent Advances and Future Prospects. Chemical Society Reviews 2019; 48(15): 3965–3986.
- [77] Zevenhoven R, Teir S, Eloneva SJE. Heat Optimisation of a Staged Gas-Solid Mineral Carbonation Process for Long-Term CO2 Storage. *Energy* 2008; 33(2): 362–370.
- [78] Ncongwane MS, Broadhurst J, Petersen JJ. Assessment of the Potential Carbon Footprint of Engineered Processes for the Mineral Carbonation of PGM Tailings.

 International Journal of Greenhouse Gas Control 2018; 77: 70–81.
- [79] Pan S-Y, Chiang P-C, Pan W, Kim HJ.
 Advances in State-of-the-Art
 Valorization Technologies for
 Captured CO2 toward Sustainable
 Carbon Cycle. Technology 2018;
 48(5): 471–534.
- [80] Huijgen W, Comans R. Carbon Dioxide Sequestration by Mineral

- Carbonation: Literature Review Update 2003-2004. TNO Report; 2005.
- [81] Larachi F, Daldoul I, Beaudoin GJ. Fixation of CO2 by Chrysotile in Low-Pressure Dry and Moist Carbonation: Ex-Situ and in-Situ Characterizations. Geochimica et Cosmochimica Acta 2010; 74(11): 3051–3075.
- [82] Hosseini T, Selomulya C, Haque N, Zhang LJ. Investigating the Effect of the Mg2+/Ca2+ Molar Ratio on the Carbonate Speciation During the Mild Mineral Carbonation Process at Atmospheric Pressure. Fuels 2015; 29(11): 7483-7496.
- [83] Altiner MJ. Use of Direct Gas-Solid Carbonation Process for Fixation of CO2 as Mineral Carbonates in Turkish Fly Ashes. *Journal of CO2 Utilization* 2018; 28: 348–359.
- [84] Jaschik J, Jaschik M, Warmuziński KJC.
 The Utilisation of Fly Ash in CO2
 Mineral Carbonation. Chemical
 Engineering 2016; 37(1): 29–39.
- [85] Ji LY, Hai W, Xiaolong G, Mihaela F, David G, Yeşim MY, Jianglong Z. CO2
 Sequestration by Direct
 Mineralisation Using Fly Ash from
 Chinese Shenfu Coal. Fuel
 Processing Technology 2017; 156: 429–
 437.
- [86] O'Connor WK, Dahlin DC, Rush GE, Gerdemann SJ, Penner LR. Energy and Economic Evaluation of Ex Situ Aqueous Mineral Carbonation. Greenhouse Gas Control Technologies; Elsevier; 2005. pp. 2011–2015.
- [87] Huijgen WJ, Comans RN. Carbon Dioxide Sequestration by Mineral Carbonation: Literature Review. TNO Report; 2003.
- [88] Béarat HM, Michael J C, Andrew VG, Deirdre N, Ryan C, Squires RW, Kyle W, George H. Carbon Sequestration Via Aqueous Olivine Mineral Carbonation: Role of Passivating Layer Formation. Environmental Science & Technology 2006; 40(15): 4802–4808.
- [89] Lobato NC, Villegas EA, Mansur MB.

 Management of Solid Wastes from
 Steelmaking and Galvanizing
 Processes: A Brief Review.

 Resources, Conservation and Recycling
 2015; 102: 49-57.
- [90] Li L, Ling T-C, Pan S-Y.
 Environmental Benefit
 Assessment of Steel Slag
 Utilization and Carbonation: A
 Systematic Review. Journal of

- *Cleaner Production* 2022; **806**: 150280.
- [91] Song Q, Guo M-Z, Wang L, Ling T-CJR, Conservation, Recycling. Use of Steel Slag as Sustainable Construction Materials: A Review of Accelerated Carbonation Treatment. Resources, Conservation and Recycling 2021; 173: 105740.
- [92] Reijonen I, Hartikainen H. Risk Assessment of the Utilization of Basic Oxygen Furnace Slag (Bofs) as Soil Liming Material: Oxidation Risk and the Chemical Bioavailability of Chromium Species. Science of The Total Environment 2018; 11: 358–370.
- [93] International Energy Agency (IEA).

 Carbon Capture, Utilisation and
 Storage. 2021. Available from:

 https://www.iea.org/fuels-and-technologies/carbon-capture-utilisation-and-storage.
- [94] Guo J, Bao Y, Wang M. Steel Slag in China: Treatment, Recycling, and Management. Waste Management 2018; 78: 318–330.
- [95] Krevor SC, Lackner KS. Enhancing Serpentine Dissolution Kinetics for Mineral Carbon Dioxide Sequestration. International Journal of Greenhouse Gas Control 2011; 5(4): 1073–1080.
- [96] Kashefi K, Pardakhti A, Shafiepour M, Hemmati A. Process Optimization for Integrated Mineralization of Carbon Dioxide and Metal Recovery of Red Mud. Journal of Environmental Chemical Engineering 2020; 8(2): 103638.
- [97] Konopacka-Łyskawa D, Czaplicka N, Kościelska B, Łapiński M, Gębicki JC. Influence of Selected Saccharides on the Precipitation of Calcium-Vaterite Mixtures by the CO2 Bubbling Method. Crystals 2019; 9(2): 117.
- [98] Dickinson SR, McGrath KJ. Aqueous Precipitation of Calcium Carbonate Modified by Hydroxyl-Containing Compounds. Crystal Growth & Design 2004; 4(6): 1411–1418.
- [99] Pérez-Villarejo LT, Fatah M, Laila C-H, Bartolomé E, Dolores S, Pedro J. Synthesis of Vaterite Caco3 as Submicron and Nanosized Particles Using Inorganic Precursors and Sucrose in Aqueous Medium. Ceramics International 2018; 44(5): 5291–5296.
- [100] Liu Y, Chen Y, Huang X, Wu G. Biomimetic Synthesis of Calcium

- Carbonate with Different Morphologies and Polymorphs in the Presence of Bovine Serum Albumin and Soluble Starch. *Materials Science and Engineering: C* 2017; 79: 457–464.
- [101] Yao CL, Xu WH, Ding AM, Zhu JM.
 Sucrose/Bovine Serum Albumin
 Mediated Biomimetic
 Crystallization of Calcium
 Carbonate. Journal of Chemical
 Sciences 2009; 121: 89–93.
- [102] Sahoo PC, Martha S, Parida K. Solar Fuels from CO2 Photoreduction over Nano-Structured Catalysts.

 Materials Science Forum 2016; 855: 1–19.
- [103] Severin N. Habisreutinger L, Jacek K. Stolarczyk. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors.

 Angewandte Chemie International Edition 2013; 52(29): 7372-7408.
- [104] Chen X, Jin, F. Photocatalytic Reduction of Carbon Dioxide by Titanium Oxide-Based Semiconductors to Produce Fuels.

 Frontiers in Energy 2019; 13: 207–220.
- [105] Zhang HH, Li L, Duan L, Zu Y, Zhai W, Li L. Wang. Visible-Light Responsive TiO2-Based Materials for Efficient Solar Energy Utilization. Advanced Energy Materials 2021; 11(15): 2003303.
- [106] Sirong BB, Xun H, Shuang W. Carbon Migration of Microalgae from Cultivation Towards Biofuel Production by Hydrothermal Technology: A Review. Fuel Processing Technology 2023; 240: 107563.
- [107] Lal R. Soil Carbon Sequestration to Mitigate Climate Change. *Geoderma* 2004; 123(1-2): 1–22.
- [108] Sun W, Liu, X. Review on Carbon Storage Estimation of Forest Ecosystem and Applications in China. Forest Ecosystems 2020; 7: 4.
- [109] Nguyen LN, Vu MT, Vu HP, Johir AH, Labeeuw L, Ralph PJ, Nghiem LD. Microalgae-Based Carbon Capture and Utilization: A Critical Review on Current System Developments and Biomass Utilization. Critical Reviews in Environmental Science and Technology 2022; 53(2): 216–238.
- [110] Paustian K, Lehmann, Ogle J. Climate-Smart Soils. *Nature* 2016; **532**: 49– 57.
- [111] Gayathri RM, Shahid G, Marimuthu A, Khalid AA, Zubair A, Norah V, Masa V, Shankar. A Review on Biological Carbon Sequestration: A

- Sustainable Solution for a Cleaner Air Environment, Less Pollution and Lower Health Risks. *Journal of King Saud University-Science* 2021; 33(2): 101282.
- [112] Kassim MA, Meng TK. Carbon Dioxide (CO2) Biofixation by Microalgae and Its Potential for Biorefinery and Biofuel Production. Bioresource Technology 2017; 584: 1121–1129.
- [113] Kumar S, Priyadarshini M, Ahmad A, Ghangrekar M. Advanced Biological and Non-Biological Technologies for Carbon Sequestration, Wastewater Treatment, and Concurrent Valuable Recovery: A Review. Journal of CO2 Utilization 2023; 68: 102372.
- [114] Chia SR, Kit WL, Hui YH, Shih-Hsin M, Heli SH, Pau L. CO2 Mitigation and Phycoremediation of Industrial Flue Gas and Wastewater Via Microalgae-Bacteria Consortium: Possibilities and Challenges. Chemical Engineering Journal 2021; 425: 131436.
- [115] Kumar BB, Joseph PA, Veerendra K, Sudesh B, Kari AW, Robert TS, Joshua M. New Trends in the Development of Heterogeneous Catalysts for Electrochemical CO2 Reduction. Catalysis Today 2016; 270: 19–30.
- [116] Zhang BJ, Yinzhu G, Mingxia M, Tianyi S, Wenping P, Hongge. Recent Progress on Hybrid Electrocatalysts for Efficient Electrochemical CO2 Reduction.

 Nano Energy 2021; 80: 105504.
- [117] Mashallah R, Mohammad M, Ahmad FI, Takeshi M. State-of-the-Art Membrane Based CO2 Separation Using Mixed Matrix Membranes (MMMs): An Overview on Current Status and Future Directions.

 Progress in Polymer Science 2014; 39(5): 817–861.
- [118] Johnson M, WZ IM. Separation and Purification Technology.

 Separation and Purification Technology 2018; 194: 191–209.
- [119] Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC. Mineral Carbonation for Carbon Sequestration in Cement Kiln Dust from Waste Piles. Journal of Hazardous Materials 2009; 168(1): 31–37.
- [120] Teir S, Kotiranta T, Pakarinen J, Mattila H. Case Study for Production of Calcium Carbonate from Carbon Dioxide in Flue Gases and

- **Steelmaking Slag**. *Journal of CO2 Utilization* 2016; **14**: 37–46.
- [121] Sreenivasulu B, Gayatri D, Sreedhar I, Raghavan KJR. A Journey into the Process and Engineering Aspects of Carbon Capture Technologies.

 Renewable and Sustainable Energy Reviews 2015; 41: 1324–1350.
- [122] Arstad BL, Anna D, Terje K, Fuad P, Martin G, Carlos AB, Richard. Design, Construction, Adsorbents and Testing of a Moving Bed Temperature Swing Adsorption (Mbtsa) Reactor for Post Combustion CO2 Capture. Energy Procedia 2014; 63: 6323–6334.
- [123] Krishnan GN, Marc B, Jianer S, Angel S, Joshua BC, Donald P, Melissa. CO2 Capture Using Advanced Carbon Sorbents. Carbon Management Technology Conference: CMTC; 2012. pp. CMTC-151373-MS.
- [124] Reddy K, Argyle M, Viswatej A. Capture and Mineralization of Carbon Dioxide. Flue Gas proceedings Conference of 2nd Accelerated Carbonation for Environmental and Materials Engineering, University of Rome, Rome, Italy, October 2008. pp. 1–3.
- [125] Fagerlund J, Teir S, Nduagu E, Zevenhoven RJ. Carbonation of Magnesium Silicate Mineral Using a Pressurised Gas/Solid Process.

 Energy Procedia 2009; 1(1): 4907–4914.
- [126] Fagerlund J, Zevenhoven RJ. An Experimental Study of Mg(OH)2 Carbonation. International Journal of Greenhouse Gas Control 2011; 5(6): 1406–1412.
- [127] Bhardwaj R, Van JR, Nugteren HW, Geerlings HJ. Accelerating Natural CO2 Mineralization in a Fluidized Bed. Environmental Science & Technology 2016; 55(11): 2946–2951.
- [128] Filipa M, Pereira DZ, Madalena A, Malcolm R, Mackley, Nuno M. CO2 Dissolution and Design Aspects of a Multiorifice Oscillatory Baffled Column. Industrial & Engineering Chemistry Research 2014; 53(44): 17303–17316.
- [129] Ahmed SMR, Phan AN, Adam P, Harvey AP. Mass Transfer Enhancement as a Function of Oscillatory Baffled Reactor Design. Chemical Engineering and Processing Process Intensification 2018; 130: 229–239.
- [130] Marco BK, David Frederick F, Martine P, Catherine X, Joelle A. Performance Characterization and Applications of Continuous Oscillatory Baffled

- **Reactors**. Chemical Engineering and Processing Process Intensification 2022; **180**: 108718.
- [131] Ehsan H, Kaveh N, Babak A. Enhancement of CO2 Capture Operation in Oscillatory Baffled Reactor. Separation and Purification Technology 2023; 324: 124536.
- [132] Pacala SA-K, Mahdi B, Mark B, Erica B, Sally B, Richard B, Dane D, Riley H, Charles J. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. National Academies of Sciences, Engineering, and Medicine; 2018.
- [133] Carbon Engineering. **Direct Air**Capture. Available from:
 https://carbonengineering.com/our-technology/.
- [134] Climeworks. **Direct Air Capture**. Available from: https://www.climeworks.com/our-technology/.
- [135] Global Thermostat. **Technology**. Available from: http://www.globalthermostat.com/technology/.
- [136] Skytree. **Technology**. Available from: https://www.skytree.eu/technology/.
- [137] Uludag-Demirer SS, Adam H, PoJen M, Annaliese S, Milton R. Enhanced Carbon Dioxide Capture Using a Mixed Amino Acid Salt Solution.

 Industrial & Engineering Chemistry Research 2023; 62(9): 4064-4072.
- [138] Ozkan M, Nayak SP, Ruiz AD, Jiang WJI. Current Status and Pillars of Direct Air Capture Technologies.

 Joule 2022; 6(9): 2011–2045.
- [139] Le Quéré CJ, Robert BJ, Matthew WS, Adam JP, Sam A, Robbie MD, Anthony JW, David RS, Yuli C, Josep G. Temporary Reduction in Daily Global CO2 Emissions During the Covid-19 Forced Confinement.

 Nature Climate Change 2020; 10(7): 647–653.
- [140] Hannah R. Who Has Contributed Most to Global CO2 Emissions?. Our World in Data; 2019. Available from:

 https://ourworldindata.org/contributed-most-global-CO2.
- [141] Lebling K, McQueen N, Pisciotta M, Wilcox J. Direct Air Capture: Resource Considerations and Costs for Carbon Removal. Joule 2021; 6(9): 1–15.
- [142] Amhamed A, Abotaleb AJ. Novel Agr-Eor Compression Integration for Process Optimization. *Journal of*

- Petroleum Science and Engineering 2019; **34**(02): 421–428.
- [143] Sodiq AA, Yasser A, Brahim O, Arash N, Nashaat El, Mufta A, Abdulkarem A. A Review on Progress Made in Direct Air Capture of CO2.

 Environmental Technology & Innovation 2023; 29: 102991.
- [144] Fawzy S, Osman AI, Doran J, Rooney DW. Strategies for Mitigation of Climate Change: A Review. *Journal of Cleaner Production* 2020; 18: 2069–2094.
- [145] Olivier JG, Janssens-Maenhout G, Peters JJ. **Trends in Global CO2 Emissions**. PBL Netherlands Environmental Assessment Agency; 2012.
- [146] Taylor PJ. Energy Technology Perspectives. International Energy Agency (IEA); 2010.
- [147] Zantye MS, Arora A, Hasan MF. Renewable-Integrated Flexible Carbon Capture: A Synergistic Path Forward to Clean Energy Future. Science 2021; 14(7): 3986–4008.
- [148] Brandl P, Bui M, Hallett JP, Mac NJ.
 Beyond 90% Capture: Possible,
 but at What Cost?. International
 Journal of Greenhouse Gas Control
 2021; 105: 103239.
- [149] Jiang L, Gonzalez-Diaz A, Ling-Chin J, Roskilly A, Smallbone AJ. Post-Combustion CO2 Capture from a Natural Gas Combined Cycle Power Plant Using Activated Carbon Adsorption. Applied Energy 2019; 245: 1–15.
- [150] Gough C, Upham PJ. Biomass Energy with Carbon Capture and Storage (Beccs or Bio-Ccs). Energy Policy 2011; 1(4): 324-334.
- [151] Bui M, Fajardy M, Mac NJ. Bio-Energy with Ccs (Beccs) Performance Evaluation: Efficiency Enhancement and Emissions Reduction. Applied Energy 2017; 195: 289–302.
- [152] Sanz-Pérez ES, Murdock CR, Didas SA, Jones CWJCr. **Direct Capture of CO2 from Ambient Air**. *Chemical Reviews* 2016; **116**(19): 11840–11876.
- [153] European Platform. Carbon Capture and Storage. 2012. Available from: https://www.zeroemissionsplatform.eu
- [154] Bui M, Fajardy M, Mac NJ. Bio-Energy with Carbon Capture and Storage (Beccs): Opportunities for Performance Improvement. Fuel 2018; 213: 164–175.

- [155] Carapellucci R, Giordano L, Vaccarelli MJ. Analysis of CO2 Post-Combustion Capture in Coal-Fired Power Plants Integrated with Renewable Energies. Energy Procedia 2015; 82: 350–357.
- [156] Keith DW, Holmes G, Angelo DS, Heidel KJJ. A Process for Capturing CO2 from the Atmosphere. *Joule* 2018; 2(8): 1573–1594.
- [157] Azarabadi H, Lackner KS. A Sorbent-Focused Techno-Economic Analysis of Direct Air Capture. Applied Energy 2019; 250: 959–975.
- [158] Creutzig FB, Christian H, Jérôme M, Jan P, Glen PS. The Mutual Dependence of Negative Emission Technologies and Energy Systems.

 Energy & Environmental Science 2019; 12(6): 1805–1817.
- [159] Safdarnejad SM, Hedengren JD, Baxter LL. Plant-Level Dynamic Optimization of Cryogenic Carbon Capture with Conventional and Renewable Power Sources. *Energy* 2015; 149: 354–366.
- [160] Pouresmaieli M, Ataei M, Qarahasanlou AN, Barabadi AJ. Integration of Renewable Energy and Sustainable Development with Strategic Planning in the Mining Industry. Journal of Cleaner Production 2023; 20: 101412.
- [161] Parvareh FS, Manish Q, Abdul M, Dia K, Rajab C, Matteo A. Integration of Solar Energy in Coal-Fired Power Plants Retrofitted with Carbon Capture: A Review. Renewable and Sustainable Energy Reviews 2014; 38: 1029–1044.
- [162] Quang DV, Milani D, Zahra MA. A
 Review of Potential Routes to Zero
 and Negative Emission
 Technologies Via the Integration
 of Renewable Energies with CO2
 Capture Processes. Journal of
 Cleaner Production 2023; 124: 103862.
- [163] Dean CC, John F, Nicholas HA, Mohamad JF. The Calcium Looping Cycle for CO2 Capture from Power Generation, Cement Manufacture and Hydrogen Production.

 Chemical Engineering Research and Design 2011; 89(6): 836-855.
- [164] Zhai R, Li C, Qi J, Yang YJ. Thermodynamic Analysis of CO2 Capture by Calcium Looping Process Driven by Coal and Concentrated Solar Power. *Energy* 2016; 117: 251–263.
- [165] Tregambi C, Montagnaro F, Salatino P, Solimene RJ. A Model of Integrated Calcium Looping for CO2 Capture

- and Concentrated Solar Power. *Energy* 2015; **120**: 208–220.
- [166] Guo L, Kuang H, Ni ZJ. A Step Towards Green Economic Policy Framework: Role of Renewable Energy and Climate Risk for Green Economic Recovery. Energy Policy 2023; 56(5): 3095-3115.
- [167] Ali AA, Mohammed HN, Ahmed SMR. A Comprehensive Review of the Impact of CO2 Emissions on Global Warming and the Potential Using Solar Energy Mitigation. Al-Rafidain Journal of Engineering Sciences 2024; 2(1): 319–340.
- [168] Saghafifar M, Gabra SJ. A Critical Overview of Solar Assisted Carbon Capture Systems: Is Solar Always the Solution?. Renewable and Sustainable Energy Reviews 2020; 92: 102852.
- [169] Cohen SM, Webber ME, Rochelle GT. Utilizing Solar Thermal Energy for Post-Combustion CO2 Capture. Energy Sustainability 2010. pp. 663–672.
- [170] Manaf NA, Abdul S, Manish P, Forough M, Dia Abbas. Model-Based Optimisation of Highly-Integrated Renewables with Post-Combustion Carbon Capture Processes. Australia National Low Emission Coal Research Development; 2016.
- [171] Kuo YM, Apichit T, Cong PA, Nguyen BN, Abdelmohsen AH, Mohamed Q. Fresh Evidence on Environmental Quality Measures Using Natural Resources, Renewable Energy, Non-Renewable Energy and Economic Growth for 10 Asian Nations from Cs-Ardl Technique. Fuel 2022; 320: 123914.
- [172] Yasmeen R, Tao R, Jie W, Padda IU, Shah WUHJRE. The Repercussions of Business Cycles on Renewable & Non-Renewable Energy Consumption Structure: Evidence from OECD Countries. Renewable Energy 2022; 190: 572–583.
- [173] Talebizadeh SM, Hosseingholizadeh R, Bellibaş M. Analyzing the Relationship between Principals' Learning-Centered Leadership and Teacher Professional Learning: The Mediation Role of Trust and Knowledge Sharing Behavior. Educational Management Administration & Leadership 2021; 68: 100970.
- [174] Li WC, Fengsheng H, Ching-Chi Z, YunQian N, Muhammad AI, Sajid M. Nexus between Energy Poverty

- and Energy Efficiency: Estimating the Long-Run Dynamics. *Resources Policy* 2021; **72**: 102063.
- [175] Moshood TD, Gusman M, Fatimah S, Shahryar A. Green and Low Carbon Matters: A Systematic Review of the Past, Today, and Future on Sustainability Supply Chain Management Practices among Manufacturing Industry. Cleaner Engineering and Technology 2021; 4: 100144.
- [176] Koomson I, Danquah MJ. Financial Inclusion and Energy Poverty: Empirical Evidence from Ghana. Energy Economics 2021; 94: 105085.
- [177] Chien FH, Ching-Chi Z, YunQian T, Tai DL. Assessing the Impact of Green Fiscal Policies and Energy Poverty on Energy Efficiency.

 Environmental Science and Pollution Research 2022; 29(3): 4363-4374.
- [178] John AS, Deinde IG. Climate Change and Economic Growth. Energy Poverty 2021; 4(3): 98–115.
- [179] Zhao J, Shahbaz M, Dong KJ, Change S. How Does Energy Poverty Eradication Promote Green Growth in China? The Role of Technological Innovation. Journal of Cleaner Production 2022; 175: 121384.
- [180] Zhao X, Mahendru M, Ma X, Rao A, Shang YJ. Impacts of Environmental Regulations on Green Economic Growth in China: New Guidelines Regarding Renewable Energy and Energy Efficiency. Energy Policy 2022; 187: 728-742.
- [181] Zhao XR, Muhammad S, Tuhin S, Gagan DS, Umer C. Impacts of Bilateral Trade on Energy Affordability and Accessibility across Europe: Does Economic Globalization Reduce Energy Poverty?. Energy and Buildings 2022; 262: 112023.
- [182] Weimin ZS, Muhammad T, Muhammad Muhammad Vishal K, D. Globalization toward **Environmental Sustainability and Electricity** Consumption **Environmental Degradation: Does** Ekc Inverted **U-Shaped Hypothesis Exist between Squared Economic** Growth and **Emissions in Top Globalized** Economies. Environmental Science and Pollution Research 2022; 29(40): 59974-59984.
- [183] Yin R, Wang Z, Chai J, Gao Y, Xu FJ. The Evolution and Response of Space Utilization Efficiency and

- Carbon Emissions: A Comparative Analysis of Spaces and Regions. *Land* 2022; 11(3): 438.
- [184] Shahbaz M, Sharma R, Sinha A, Jiao ZJEP. Analyzing Nonlinear Impact of Economic Growth Drivers on CO2 Emissions: Designing an SDG Framework for India. *Energy Policy* 2021; 148: 111965.
- [185] Stavins RN. The Future of US
 Carbon-Pricing Policy.

 Environmental and Energy Policy and the Economy 2020; 1(1): 8–64.
- [186] El-Katiri L, Fattouh B. A Brief Political Economy of Energy Subsidies in the Middle East and North Africa. Combining Economic and Political Development 2017; pp. 58–87.
- [187] Allcott HG, Michael. Is There an Energy Efficiency Gap?. Journal of Economic Perspectives 2012; 26(1): 3-28
- [188] Newell RG, Wilson NE. Technology Prizes for Climate Change Mitigation. RFF Press; 2005.
- [189] Bodansky DJ. The Paris Climate Change Agreement: A New Hope?. *American Journal of International Law* 2016; 110(2): 288–319.
- [190] Keith DW, Holmes G, Angelo D, Heidel K. A Process for Capturing CO2 from the Atmosphere. *Joule* 2018; 2(8): 1573–1594.
- [191] Fasihi M, Efimova O, Breyer C. Techno-Economic Assessment of CO2 Direct Air Capture Plants.

 Journal of Cleaner Production 2019;
 224: 957–980.
- [192] Sanz-Pérez ES, Murdock R, Didas S, Jones C. **Direct Capture of CO2** from Ambient Air. *Chemical Reviews* 2016; 116(19): 11840–11876.
- [193] Pires JC, Martins FG, Alvim-Ferraz MC, Simões M. Recent Developments on Carbon Capture and Storage: An Overview. Chemical Engineering Research and Design 2011; 89(9): 1446–1460.
- [194] Realmonte G, Drouet L, Gambhir A, Glynn J, Hawkes A, Köberle A, Tavoni M. An Inter-Model Assessment of the Role of Direct Air Capture in Deep Mitigation Pathways. *Nature Communications* 2019; 10(1): 1–12.
- [195] Global CCS Institute. Global Status of CCS. Available from: https://www.globalccsinstitute.com.
- [196] International Energy Agency (IEA).

 Carbon Pricing. Available from:

 https://www.iea.org/reports/carbon-pricing.

- [197] World Bank. State and Trends of Carbon Pricing. Available from: https://openknowledge.worldbank.org.
- [198] Carbon180. Carbon Removal. Available from: https://carbon180.org.
- [199] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2023: Synthesis Report. Available from: https://www.ipcc.ch.
- [200] Bowen FJ. Carbon Capture and Storage as a Corporate Technology Strategy Challenge. *Energy Policy* 2011; 39(5): 2256–2264.
- [201] Wilberforce T, Baroutaji A, Soudan B, Al-Alami AH, Olabi AGJSotte. Outlook of Carbon Capture Technology and Challenges. Science of The Total Environment 2019; 657: 56–72.
- [202] Haszeldine RS. Carbon Capture and Storage: How Green Can Black Be?. Science 2009; 325(5948): 1647–1652.
- [203] Bachu SJ. CO2 Storage in Geological Media: Role, Means, Status and Barriers to Deployment. Progress in Energy and Combustion Science 2008; 34(2): 254–273.
- [204] Damen K, Faaij A, Turkenburg WJ. Health, Safety and Environmental Risks of Underground CO2 Storage-Overview of Mechanisms and Current Knowledge. Climate Change 2006; 74(1-3): 289-318.
- [205] Diao Y, Zhang S, Wang Y, Li X, Cao HJ.
 Short-Term Safety Risk
 Assessment of CO2 Geological
 Storage Projects in Deep Saline
 Aquifers Using the Shenhua CCs
 Demonstration Project as a Case
 Study. International Journal of
 Greenhouse Gas Control 2015; 73:
 7571-7586.
- [206] Statista. Global Carbon Capture and Storage Capacity. 2024. Available from: https://www.statista.com.
- [207] Raza A, Arshad R, Reza G, Raoof B, Chua HN, Ramasamy H, Mohamed A. A Screening Criterion for Selection of Suitable CO2 Storage Sites.

 Journal of Natural Gas Science and Engineering 2016; 28: 317–327.
- [208] Zakkour P, Haines MJ. Permitting Issues for CO2 Capture, Transport and Geological Storage: A Review of Europe, USA, Canada and Australia. International Journal of Greenhouse Gas Control 2007; 1(1): 94–100.
- [209] Tomić L, Maričić VK, Danilović D, Crnogorac MJPr. Criteria for CO2 Storage in Geological Formations. *Podzemni Radovi* 2018; **32**: 61–74.

- [210] Leung DY, Caramanna G, Maroto-Valer M, reviews se. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. Renewable and Sustainable Energy Reviews 2014; 39: 426–443.
- [211] Koytsoumpa EI, Bergins C, Kakaras EJ. The CO2 Economy: Review of CO2 Capture and Reuse Technologies. The Journal of Supercritical Fluids 2018; 132: 3–16.
- [212] MacDowell NF, Nick B, Antoine H, Jason G, Amparo J, George A, Claire SW, Charlotte KS, Nilay F. An Overview of CO2 Capture Technologies. Energy & Environmental Science 2010; 3(11): 1645–1669.
- [213] García JL, Galán BJ. Integrating Greenhouse Gas Capture and C1 Biotechnology: A Key Challenge for Circular Economy. *Microbial Biotechnology* 2022; **15**(1): 228.
- [214] Mohan SV, Modestra JA, Amulya K, Butti SK, Velvizhi GJ. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

 Trends in Biotechnology 2016; 34(6): 506–519.
- [215] Wich T, Lueke W, Deerberg G, Oles MJ.
 Carbon2chem®-Ccu as a Step
 toward a Circular Economy.
 Frontiers in Energy Research 2020; 7:
 162.
- [216] Fragkos PJ. Assessing the Role of Carbon Capture and Storage in Mitigation Pathways of Developing Economies. *Energies* 2021; 14(7): 1879.
- [217] Kamkeng AD, Wang M, Hu J, Du W, Qian FJ. Transformation Technologies for CO2 Utilisation: Current Status, Challenges and Future Prospects. Chemical Engineering Journal 2021; 409: 128138.
- [218] Lackner KSJS. A Guide to CO2 Sequestration. Science 2003; 300(5626): 1677–1678.
- [219] Geden OJ. The Paris Agreement and the Inherent Inconsistency of Climate Policymaking. Wiley Interdisciplinary Reviews: Climate Change 2016; 7(6): 790–797.
- [220] Fajardy M, Mac NJ. Can Beccs Deliver Sustainable and Resource Efficient Negative Emissions?. Energy & Environmental Science 2017; 10(6): 1389–1426.
- [221] Doelle MJ. The Paris Agreement: Historic Breakthrough or High

- Stakes Experiment?. Climate Law 2016; 6(1-2): 1-20.
- [222] Leiserowitz A, Maibach E, Roser-Renouf C, Feinberg G, Rosenthal SJ. Climate Change in the American Mind: March 2015. Yale Project on Climate Change Communication; 2015.
- [223] Chinn S, Hart PS, Soroka SJ. Politicization and Polarization in Climate Change News Content, 1985-2017. Science Communication 2020; 42(1): 112-129.
- [224] Honegger M, Reiner DJ. The Political **Economy of Negative Emissions** Technologies: Consequences for International **Policy** Design. *Climate Policy* 2018; **18**(3): 306–321.
- [225] Minx, Jan C, William FC, Max WF, Sabine H, Jérôme C, Felix A. **Negative Emissions—Part** Research 1: Landscape and Synthesis. Environmental Research Letters 2018; **13**(6): 063001.
- [226] Gambhir A, Rogelj J, Luderer G, Few S, Napp TJ. Energy System Changes in 1.5 °C, Well Below 2 °C and 2 °C Scenarios. Energy Strategy Reviews 2019; **23**: 69-80.
- [227] Rogelj J, Forster PM, Kriegler E, Smith CJ, Séférian RJ. Estimating and Tracking the Remaining Carbon **Budget for Stringent Climate** Targets. Nature 2019; 571(7765): 335-342.
- [228] Bryner NJ. The Once and Future Clean Air Act: Impacts of the Inflation Reduction Act on EPA's Regulatory Authority. **Boston** College Law Review 2023; **64**(3): 1–45.
- [229] Akervoll IL, Erik L. Feasibility of **Reproduction of Stored CO2 from** the Utsira Formation at the Sleipner Gas Field. Energy Procedia 2009; 1(1): 2557-2564.
- [230] Quest. Global Carbon Capture and Storage Institute. Available from: www.Globalccsinstitute.Com; 2023.
- [231] Streibel MF, Robert JM, Sonja G, Sallie M, Fabian L. From Pilot to Demo **Scale-Comparing Ketzin Results** with the Illinois Basin-Decatur **Project**. Energy Procedia 2014; **63**: 6323-6334.
- [232] Statista. Leading Carbon Capture, and Storage (Ccus) Companies Worldwide in 2020, by Operating Capacity. 2020.
- [233] Gunnarsson IA, Edda SO, Eric HC, Deirdre EA, Magnús S, Bergur S, Sandra ÓM, Juerg MS, Martin J, Bjarni M. **The** Rapid and Cost-Effective Capture and Subsurface Mineral Storage of Carbon and Sulfur at the Carbfix2

- Site. *International* Journal of Greenhouse Gas Control 2018; 79: 117-
- [234] Nagireddi S, Agarwal JR, Vedapuri DJ. Carbon Dioxide Capture, Utilization, and Sequestration: Current Status, Challenges, and Future **Prospects** for Global **Decarbonization**. ACS Engineering *Au* 2023; **3**(4): 1–25.
- [235] Blue Planet. Sustainable Building Available Materials. from: https://www.sfbayaggregates.com/; 2021.
- [236] Ranganath S, McCord S, Sick VJ. Assessing the **Maturity** Alternative Construction Materials and Their Potential Impact on Embodied Carbon for Single-Family Homes American Midwest. Frontiers in Built Environment 2024; **10**: 1384191.
- [237] International Energy Agency (IEA). Carbon Capture, Utilisation and Storage. Available https://www.iea.org/fuels-andtechnologies/carbon-captureutilisation-and-storage; 2021.
- [238] Global CCS Institute. The Global **Status of CCS 2021**. Available from: https://www.globalccsinstitute.com/w p-content/uploads/2021/10/2021-Global-Status-of-CCSreport Global CCS Institute.pdf;
- [239] Ahmed ASR, Rezaur B, Muhammad KB. A Review Based on Low-and High-Stream Global Carbon Capture and Storage (Ccs) Technology and Implementation Strategy. Journal of Applied Science and Process Engineering 2021; **8**(1): 722–737.
- GJ. **Carbon** Capture [240] Leonzio Utilization and Storage Supply Chain: Analysis, Modeling and Optimization. Sustainable *Agriculture Reviews* 2019; **37**: 37–72.
- [241] Hepburn CA, Ella B, John C, Emily AF, Sabine MD, Niall M, Jan CS, Pete W, Charlotte K. The Technological and **Economic Prospects for CO2** Utilization and Removal. Nature 2019; **575**(7781): 87–97.
- [242] Saravanan AV, Dai-Viet Bhuvaneswari S, Narayanan V, Anantha Swetha PR, Reshma S. Comprehensive Review Different Approaches for CO2 Utilization and Conversion Pathways. Chemical Engineering Science 2021; 236: 116515.
- [243] De Baar HJ. Options for Enhancing the Storage of Carbon Dioxide in

- the Oceans: A Review. Energy Conversion and Management 1992; **33**(5-8): 635–642.
- [244] Zevenhoven, Fagerlund R, Songok J. CO2 Mineral **Sequestration: Developments toward Large-Scale Application**. *Greenhouse Gases*: Science and Technology 2011; 1(1): 48-
- [245] Benson, Sally M, Cole DR. CO2 Sequestration in Deep **Sedimentary Formations**. *Elements* 2008; 4(5): 325-331.
- [246] Gaurina-Medimurec N, Mavar KN. Carbon Capture and Storage (Ccs): Geological Sequestration of CO2. *CO2 Sequestration* 2019; pp. 1–21.

- [247] Meisen A, Shuai XJ. Research and **Development Issues** in Capture. Energy Conversion and Management 1997; 38: S37–S42.
- [248] Pan S-YC, Andrew C, Lin EE, Yi PK, Hyunook C, Pen C. An Innovative Approach to Integrated Carbon Mineralization and Waste Utilization: A Review. Aerosol and Air Quality Research 2015; 15(3): 1072-1091.
- [249] Hameed MA, Mohammed HN, Abdullah Improving the Thermal MR. **Performance of a Heat Exchanger** Using a New Passive Technology. Tikrit Journal of Engineering Sciences 2023; **30**(1): 66-71.