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Abstract: The application of deep learning 

(DL) techniques to optimize signal 

constellations in communications using 

orthogonal frequency division multiplexing 

(OFDM) has shown potential. This novel 

approach utilizes network capabilities to create 

tailored signal constellations well suited for 

underwater conditions. The main objectives of 

this research are to enhance the effectiveness 

and dependability of data transmission in 

channels by adapting these signal 

constellations without adopting cyclic prefix, 

which can exploit the inherent bandwidth 

limitation effectively. The most prominent 

finding from this research is that even with zero 

cyclic prefix (CP) and a few pilot samples Np, 

inserted ahead of N subcarriers, the proposed 

signal constellation algorithm based on 

supervised DL attains a stable profile. Thus, it 

offers more bandwidth and reduces the 

complexity. The hegemony was depicted in the 

performance of the bit error rate (BER) of the 

proposed DL-based signal constellation 

prediction algorithm, which achieved 100% 

accuracy and a gain of 10dB and 12dB over 

minimum mean square error (MMSE) and least 

square (LS) channel estimation performance, 

respectively, when CP = 0 at 𝑁𝑝 = 𝑁/4. 

Ultimately, this work contributes to increasing 

the performance of communication systems for 

applications such as exploration, monitoring, 

and data collection. 

 

 

 

 

 

 

http://doi.org/10.25130/tjes.32.2.31
mailto:ammar.algassab@nahrainuniv.edu.iq
mailto:majid.younus@uoninevah.edu.iq
mailto:emad.khalaf@uoninevah.edu.iq
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.25130/tjes.32.2.31
https://orcid.org/0000-0001-7536-2856
https://orcid.org/0000-0002-1207-0474
https://orcid.org/0000-0002-4542-0936
mailto:ammar.algassab@nahrainuniv.edu.iq


 

 

Ammar E. Abdelkareem, Majid Dherar Younus, Emad A. Al-Sabawi / Tikrit Journal of Engineering Sciences 2025; 32(2): 2026. 

Tikrit Journal of Engineering Sciences │Volume 32│No. 2│2025  2 Page 

المتعامد   كوكبة الإشارات المعتمدة على التعلم العميق للأنظمة متعددة الارسال في التردد
 للاتصالات الصوتية تحت الماء 

   2عماد عطية خلف، 2يونسماجد ضرار ،  1الكريمعمار عبدالملك عبد 
 العراق.  – بغداد  /قسم هندسة شبكات الحاسوب/ كلية هندسة المعلومات/ جامعة النهرين 1
 العراق.  –الموصل  / قسم هندسة المعلومات والحاسوب/ كلية هندسة الالكترونيات / جامعة نينوى 2

 الخلاصة 
ال  إمكاناته لتحسين مجموعات الإشارات في الاتصالات باستخدام الأنظمة متعددة الارسال في تقيسم  التعلم العميق  تقنيات  تردد  لقد أظهر تطبيق 

الماء.   تحت  الموجودة  للظروف  تمامًا  ومناسبة  إشارات مصممة خصيصًا  مجموعات  الشبكة لإنشاء  قدرات  الجديد  النهج  هذا  يستخدم  المتعامد. 
بادئ الأ ة  هداف الرئيسية لهذا البحث هي تعزيز فعالية وموثوقية نقل البيانات، في القنوات من خلال تكييف مجموعات الإشارة هذه دون اعتماد 

ي  حث هدورية، والتي يمكنها استغلال قيود عرض النطاق الترددي المتأصلة بشكل فعال. النتيجة الأكثر وضوحًا التي تم التوصل إليها من هذا الب
وكبة  أنه حتى مع وجود بادئة دورية صفرية وعدد قليل من العينات التجريبية، التي تم إدراجها قبل الموجات الحاملة الفرعية، فإن خوارزمية ك

تتيح هذه الخوارزمية عرض حزمة اكبر و   لذلك، الإشارة المقترحة المستندة إلى التعلم العميق الخاضع للإشراف تصل إلى ملف تعريف مستقر.  
لتي تحقق دقة  اقل تعقيداً. يتم تصوير الهيمنة في أداء معدل خطأ البتات لخوارزمية التنبؤ بكوكبة الإشارة القائمة على التعلم العميق المقترحة، وا 

لي، مقابل صفر  دير القناة المربعة الأقل، على التواديسيبل على الحد الأدنى لمتوسط الخطأ المربع وأداء تق  12ديسيبل و  10٪ وكسب  100بنسبة  
تطبيقات  البادئة الدورية وطول الدليل هو ربع الموجات الحاملة الفرعية. وفي نهاية المطاف، يساهم هذا العمل في زيادة أداء أنظمة الاتصالات ل

 مثل الاستكشاف والمراقبة وجمع البيانات. 

 . التعقيد الماء، الاتصالات الصوتية تحت  الإشارات، كوكبة  المتعامد، الأنظمة متعددة الارسال في تقيسم التردد  العميق،التعلم  كلمات الدالة:ال
 

1.INTRODUCTION
The growing demand for data transfer in 
communication systems has created a need for 
intelligent signal processing methods. Machine 
learning (ML) algorithms have proven effective 
in many engineering fields. ML algorithms 
excel at identifying system characteristics and 
capturing real-world imperfections due to their 
reliance on data. Neural networks (NNs) have 
proven highly effective in estimating channels. 
However, DL algorithms often come with 
requirements that increase the complexity of 
communication systems. Moreover, deep 
learning networks typically consist of neurons 
distributed across layers, necessitating a 
volume of training data to achieve the intended 
result. Blind modulation classification (BMC) 
techniques for OFDM fall short of meeting the 
performance standards by relying on statistical 
methods [1]. As a result, the modulation 
classification research community is exploring 
the integration of learning (DL) approaches to 
enhance modulation classification accuracy. 
However, many existing DL methods for 
automatic modulation classification (AMC) of 
OFDM that depend on extracting features from 
the signal encounter challenges in adapting to 
changes in signal parameters within adaptive 
transceiver systems. A new method for 
addressing this problem involves an AMC 
solution designed for OFDM systems. This 
solution utilizes a network (CNN) with 
learning. The innovative AMC approach allows 
for the recognition of the modulation format in 
received OFDM signals when there are 
fluctuations in the number of subcarriers and 
randomization in carrier frequency offset 
(CFO) symbol timing offset (STO). In the realm 
of 5G and upcoming 6G systems, cognitive 
radio (CR) technology plays a role in managing 
spectrum resources due to the abundance of 
radio frequencies available. Blind modulation 
recognition (BMR), an aspect of CR technology 

that significantly enhances efficiency, was 
proposed by [2]. However, there is a lack of 
focus on BMR research in MIMO OFDM 
systems. Leveraging the advancements in 
learning, an approach called series 
constellation multi-modal feature network (SC 
MFNet) was introduced to identify modulation 
types on MIMO OFDM subcarriers. By utilizing 
a blind signal separation algorithm without 
knowledge, the distorted transmitted signal 
was reconstructed. Zhang et al. [3] introduced a 
DL-based receiver for acoustic UWA 
communications using OFDM. The model was 
tailored to suit the complexities of UWA 
communications by utilizing a network with 
skip connections for signal recovery. 
Leveraging stacks of layers with connections 
enabled the effective extraction of meaningful 
features from incoming signals and 
reconstructing the original transmitted 
symbols. The performance was validated using 
training and testing data generated from the 
WATERMARK dataset collected at sea. The 
results of the experiments were demonstrated 
using the least squares channel estimation.  Qin 
et al. [4] explored the developments in learning 
for physical-layer communications. It focused 
on the difficulties faced by systems and  how 
deep learning can address them. The article also 
examined the advantages of incorporating 
knowledge into learning models and showcased 
instances where it enhanced communication 
system performance. Lastly, the paper 
proposed research avenues to advance 
communications at the physical layer. Jebur et 
al. [5] explored the possibility of creating 
machine learning techniques for channel 
estimation in 6G communications. The 
suggested algorithm combined with frequency 
division multiplexing to remove inter-symbol 
interference. The article investigated the 
algorithms' resilience, intricacy, and 
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convergence while showcasing the achieved 
outcomes. Furthermore, it delved into the 
applications of this research in 
communications.  Furthermore, Zhang et al. [6] 
introduced an approach to estimate channels 
and detect signals in cyclic prefix-free (CP-free) 
OFDM systems using a passing technique. The 
method, known as orthogonal approximate 
message passing (DLOAMP), is designed to be 
efficient in terms of resources and can 
accurately estimate the channel variation 
through training. The simulation results 
showed that DLOAMP outperformed 
algorithms when regarding high-order 
modulation. The adaptability of OAMP Net 
allows its parameters to be adjusted for each 
layer. This proposed method exhibited 
promising performance compared to channel 
state information (CSI) CP at SNR and even 
surpassed CE Net CP under conditions similar 
to those with low SNR.  Additionally, the impact 
of a specific optimization technique known as 
”early stop” in implementing the proximal 
policy algorithm within the openai/spinningup 
library is presented in [7]. The main concept 
behind early termination methods is to assess 
the extent to which the policy changes during 
each update and avoid updates that lead to 
sudden and drastic policy changes. In this 
version of early stop, KLE Stop, the updates will 
be halted if the KL divergence between 
consecutive updates exceeds a predetermined 
threshold. Dos Santos Sousa et al. [8] did not 
consider the decoding of OFDM as it can be 
efficiently managed using a fast Fourier 
transform with complexity. Additionally, this 
approach reduces the search area and 
subsequently simplifies the networks' 
complexity. This paper aims to present a 
technique for estimating channels in OFDM 
systems that do not require a CP. Mohammed 
[9] created a simulated environment to assess 
the performance of OFDM under various 
channel conditions. Different models were 
utilized. Furthermore, a learning technique has 
been utilized to estimate the channel by 
leveraging data from training. Two types of 
channel models were utilized to compare their 
effectiveness. An endeavor to employ learning 
techniques in addressing wireless channels 
without requiring real-time training is 
presented in Ref [10]. The outcomes of the 
simulations demonstrate that deep learning 
models can achieve performance comparable to 
conventional methods when there is an 
adequate number of pilots in OFDM systems. 
Moreover, these models exhibited better 
performance, with a limited number of pilots, 
and they were CP-free. An algorithm utilizing 
neural networks (DNN) was introduced to 
support modulation [11]. Its goal was to select 
the transmission mode to maximize the 
achievable throughput. According to the 

simulation results, the suggested multi-layer 
SBL algorithm showed accuracy in channel 
estimation compared to other techniques. In 
terms of labels, ambient backscatter 
communication (AmBC) is presented as a 
promised solution in Ref. [12] for energy-cost-
effective Internet of Things (IoT) systems with 
strict power and budget constraints. A label-
assisted transmission (LAT) framework that 
eliminates the need to estimate channel state 
information (CSI) in an AmBC system was 
proposed. The framework involved sending two 
known labels from the tag before transmitting 
data and using a modulation-constrained (MC) 
expectation maximization (EM) algorithm for 
signal detection. The paper plays a role in 5G 
and future wireless communication systems. In 
the field of modulation classification in 
communications systems, researchers [13] have 
embraced a DL approach. Their study primarily 
aimed to explore the application of DL in 
modulation classification tasks within 
communications systems. By leveraging large 
amounts of data from these systems, DL 
eliminates the requirement for feature 
selection, thereby streamlining the entire 
process. Signal modulation identification (SMI) 
is key in OFDM systems. It is commonly 
achieved through feature extraction and 
machine learning. However, traditional 
methods have limitations when classifying 
signals and extracting features, making them 
impractical for OFDM systems. A DL approach 
using a network (CNN) has been proposed for 
SMI [14]. This method involves training the 
network with in-phase and quadrature (IQ) 
samples of OFDM signals and incorporating 
dropout layers to prevent overfitting. 
Experimental results demonstrated that this 
DL-based method achieved accuracy and 
consistency compared to techniques 
performing effectively across various datasets.  
Existing modulation identification techniques 
rely heavily on feature extraction and machine 
learning classification algorithms, which face 
difficulties extracting inherent signal features, 
resulting in classification vulnerabilities. 
Traditional methods predominantly rely on 
approaches, which makes distinguishing 
between different modulation modes 
challenging. In addition, all a forementioned 
studies have concentrated on terrestrial 
Channels. However, for an underwater channel, 
Deep learning algorithms have requirements 
and necessitate a substantial volume of training 
data. This issue has prompted the authors to 
consider the potential of implementing a 
machine learning (ML) algorithm with 
complexity precisely calculated for underwater 
environment. Additionally, due to the band-
limited nature of the underwater channel, a 
zero cyclic prefix was adopted to be well suited 
for such a nature. 
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2.SYSTEM AND DEEP LEARNING 
MODEL  
In this scenario, a communication setup with 
two nodes exchanges information through a 
channel. To ensure communication without 
interference caused by the channel, a technique 
called frequency division multiplexing (OFDM) 
is utilized. This approach helps the authors to 
eliminate the effects of inter-symbol 
interference (ISI) that may occur due to the 
characteristics of the channel. Consider the 𝑖𝑡ℎ 
OFDM signal generated by performing inverse 
Fast Fourier transform (IFFT) of 𝑋𝑖(𝑘) with 𝑁 
subcarriers: 

𝒙𝒊(𝒏) =
𝟏

√𝑵𝒄

∑  

𝑵𝒄−𝟏

𝒏=𝟎

𝑿𝒊(𝒌)𝒆𝒋𝟐𝝅𝒇𝒊(𝒏) (1) 

It is assumed that the signal is modulated using 
M-ary quadrature phase keying (QPSK) and 
transmitted over a multipath fading channel 
characterized by: 

𝒄(𝝉, 𝒕) = ∑  

𝑳−𝟏

𝒍=𝟎

𝒉𝒍(𝒕)𝜹[𝝉 − 𝝉𝒍(𝒕)] (2) 

where {ℎ𝑙(𝑡)} are the path amplitudes, {𝜏𝑙(𝑡)} 
are the time-varying path delays, and 𝐿 is the 
total number of paths [15]. The path delays, 𝜏𝑙, 
and the gains, ℎ𝑙, were assumed constant over 
the frame duration 𝑇. Once the channel in Eq. 
(2) is convolved with the transmitted signal in 
Eq. (1), the received signal is given as: 

𝒚 = [𝒚𝟏, ⋯ , 𝒚𝑲], ∈ ℂ𝟏×𝑲 (3) 
where 𝐾 is the number of packets. 
3.DL-BASED SIGNAL CONSTELLATION  
This section briefly discusses the design of RNN 
cells that have been shown to outperform 
neural networks when dealing with long input 
data [16]. Then, the architecture of the 
proposed estimators based on learning will be 
presented. 
3.1.LSTM Structure 
The LSTM technique was developed to tackle 
the challenge of maintaining long-term 
information while accommodating short-term 
input variations. Figure 1 illustrates the 
architecture of an LSTM cell. This cell consists 
of three gates [17]: The input gate 𝑖𝑡 is chosen 
when adding information to the cell, the forget 
gate 𝑓𝑡 clears the contents of the cells, and the 
output gate 𝑜𝑡  enables extracting information 
from the cell [18]. LSTMs can be 
mathematically represented as follows [19]: 

𝒊𝒕 = 𝝈(𝑾𝒙𝒊𝒙𝒕 + 𝑾𝒉𝒊𝒉𝒕−𝟏 + 𝒃𝒊) (4) 

𝒇𝒕 = 𝝈(𝑾𝒙𝒇𝒙𝒕 + 𝑾𝒉𝒇𝒉𝒕−𝟏 + 𝒃𝒇) (5) 

𝒐𝒕= 𝝈(𝑾𝒙𝒐𝒙𝒕 + 𝑾𝒉𝒐𝒉𝒕−𝟏 + 𝒃𝒐) (6) 
where 𝑥𝑡 and 𝜎 are the current input at the time 
step 𝑡 and sigmoid, respectively. While ℎ𝑡−1 
denotes the previous time step 𝑡 − 1 of the 
hidden state. The cell state (𝐶𝑡) is updated 
based on these gates and the current input (𝑥𝑡), 
as follows: 

𝑪𝒕 = 𝒇𝒕 ⊙ 𝑪𝒕−𝟏 + 𝒊𝒕 ⊙ (𝑾𝒙𝒄𝒙𝒕 +
𝑾𝒉𝒄𝒉𝒕−𝟏 + 𝒃𝒄)  (7) 

Where ⊙ denotes element-wise multiplication. 
The calculation of the candidate cell state 
update at time step 𝑡 in an LSTM cell is 
represented by 𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐. This 
update considers the influence of the input 𝑥𝑡 
and the previous cell state 𝐶𝑡−1 on the cell state 
𝐶𝑡 with the wights 𝑊𝑥𝑐 and 𝑊ℎ𝑐, determining 
their respective contributions strengths. The 
bias term 𝑏𝑐 provides an offset to this 
combination. To ensure that the new cell state 
remains within the range of [1, −1], a non-
linear transformation is applied using the 
hyperbolic tangent function. The output of the 
LSTM cell at time 𝑡 is computed as: 

𝒉𝒕 = 𝒐𝒕 ⊙ 𝐭𝐚𝐧𝐡(𝑪𝒕) (8) 
where tanh refers to hyperbolic tangent 
activation functions. 

 

Fig. 1 LSTM Cell Structure.  

3.2.The Proposed DL-based Signal 
Constellation Architecture 
When learning is incorporated into utilizing the 
QPSK constellation, many of the equations used 
in digital communications are simplified within 
the process of data preprocessing and neural 
network structure. Nevertheless, there are still 
underlying concepts and mathematical 
representations that are important in this 
integration. For constellation learning, it is 
possible to normalize the I and Q components 
of the QPSK signal as: 

𝑰𝒏, 𝑸𝒏 =
𝑰−𝝁𝑰

𝝈𝑰
𝟐 ,

𝑰−𝝁𝑸

𝝈𝑸
𝟐   (9) 

where the components 𝐼𝑛 , 𝑄𝑛 are the normalized 
real and imaginary of 𝐼 and 𝑄, respectively, 𝜇 is 
the mean, and 𝜎2 is the noise variance. In tasks 
involving classification, like predicting QPSK 
constellation points, it is common to use the 
entropy loss as a frequently employed loss 
function. The cross-entropy loss is defined as; 

𝑳 = − ∑  𝑴
𝒄=𝟏 𝒚𝒐,𝒄 𝐥𝐨𝐠(𝒑𝒐,𝒄)  (10) 

where 𝑀 is 𝑀-ary equal to the number of classes 
(4 in QPSK), 𝑦 denotes the binary [1,0] if class 
label 𝑐 is the correct classification for 
observation 𝑜, and 𝑝 is the predicted probability 
that observation 𝑜 is of class 𝑐. In the present 
work, an adaptive moment estimation (ADAM) 
optimization technique is adopted to optimize 
the layers wight 𝑊 and the bias 𝑏. The 
architecture is shown in Table 1. 
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Table 1 Architecture Parameters. 

Layer Type of Layer LSTM 

L1  Input Layer Sequence 

L2 Hidden Layer 1 LSTM 

L3 Output Layer Softmax and Classifier 

4.PROPOSED SYSTEM FOR SIGNAL 
CONSTELLATION  
In this section, the proposed system's 
architecture and learning mechanism are 
introduced, based on a deep learning approach 
to predict signal constellations for underwater 
channels. Furthermore, the stages of the 
proposed system are illustrated, including data 
preparation, deep learning model training, and 
testing. These stages are visualized in Fig. 2.  

 

Fig. 2 System Model-Based Deep Learning. 

4.1.Preparing Dataset and Training 
Models - Offline Stage 
Preparing the datasets to be used to train the 
learning-based estimators is started in this 
phase. These estimators are trained offline. 
Then, in this stage, the trained estimators are 
utilized, along with their parameters, to make 
predictions for the channel. In Fig. 2, the pilots 
and data are fed into the OFDM transmitter to 
generate a series of n frames. These frames are 
then transmitted after being processed through 
the channel convolution. The pilots transmitted 
are then fed into an LS estimator to calculate an 
estimated channel. LS, which becomes one of 
the inputs, is used to train the estimators. 
During this research phase, the main focus is on 
the groundwork for effectively using deep 
learning techniques in underwater 
communication. This phase involves collecting 
and preprocessing a large amount of data, 
including acquiring acoustic channel data and 
creating training datasets. In Fig. 2, the 
transmitter includes input data along with 
pilots based on the input data 𝑋(𝑘) to produce 
𝑥(𝑛). This transmitted signal convolved with 
the channel to produce 𝑦(𝑛). At the receiver 
front end, the preprocessing stage contains 
serial to parallel conversion, CP removal, and 
FFT. A set of real and imaginary parts for the 
entire packet, and the feature of the received 

packet are produced. These features are entered 
into the network to produce the constellation, 
as shown in Algorithm 1, the training and 
testing. Thus, the DL network deals with the 
real and imaginary parts values. The DL 
networks can be represented by the input vector 
as: 

𝒀(𝒏) = [𝕽(𝒀(𝒏)), 𝕴(𝒀(𝒏))] (11) 

The target contains the formal QPSK 
constellation. 

𝑺(𝒏) = [𝒆
𝝅
𝟒 , 𝒆

𝟑𝝅
𝟒 , 𝒆

𝟓𝝅
𝟒 , 𝒆

𝟕𝝅
𝟒 ] (12) 

Underwater communication systems that 
utilize OFDM technology require carefully 
designed and improved specialized network 
architectures. These architectures provide a 
foundation for training and optimizing models 
that effectively adapt signal constellations to 
ensure data transmission performance in 
challenging underwater environments. 
4.2.Online Stage 
During this stage, the main focus revolves 
around applying learning models in real-time 
for underwater communication systems. In this 
stage, neural networks that have been trained 
play a role by adjusting signal constellations to 
adapt to the changing conditions encountered 
during data transmission. These conditions 
may include variations in channel 
characteristics, interference, and noise levels 

https://tj-es.com/
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commonly found in environments. Through 
learning and optimization, the online phase 
aims to enhance the resilience, dependability, 
and overall efficiency of acoustic 
communications based on OFDM technology. 
The ultimate goal is to ensure the transmission 
and reception of data packets in challenging 
and unpredictable underwater scenarios. In 

this stage, a representation can be seen, as 
shown in Fig. 2. The trained parameters will be 
combined with the Test set to accurately 
determine the signal constellation using the 
trained data. Algorithm 1 provides an overview 
of the steps involved in training and testing 
signal constellations based on learning. 

 

Algorithm 1: DL-Based Signal Constellation Algorithm 

stage1: Offline Training 
1. Generate data for the transmitted signal using 𝒙 in 1 (Pilot, subcarriers, constellation). 
2. Compute fading channel coefficient using 2. 
3. Convert data to packet (pilot and data). 
4. compute integer FFT for each packet. 
5. insert CP. 
6. Detect the received signal using 3 and 11. 
7. convert tx pack and 𝐫𝐱 pack to features (target) 
8. Formulate the transmitted packet to labels (Target). 
9. combine data set to construct feature for DL algorithm to train the data set 80 and 20. 
10. The DL algorithm consist of 

Inputlayer ← 𝟏 
LSTM ← 𝟏𝟔 Layers 
Fullyconnectedlayer ← 𝟒 
Softmaxlayer 
Classification - outputlayer 

11. Train the network 
12. Save 
stage2: Online Training  
1. Load Trained network.  
2. Convert received packet to feature.  
3. Estimate constellation labels using DL classifier.  
4. Convert label to constellation. 

 

4.3.Data Set 
For the constellation prediction task, a data set 
is generated with a QPSK modulation. This data 
set is used to verify the resilience of the 
proposed system. A range of signal-to-noise 
ratio (SNR) from 0 to 50 dB with a step of 5 dB 
is adopted, and data of 25000 packets per 
modulation symbol was used for training and 
testing. Considering the 128 OFDM subcarriers 
for data and 128 subcarriers for the pilot, there 
are 256 real and 256 imaginaries, respectively, 
i.e., 512 values to represent the feature of each 
received packet used. Thus, a large data set is 
input to the network for training or delivered in 
the online phase to predict the constellation. 
5.COMPLEXITY ANALYSIS  
This section compares the complexity of the 
proposed deep learning-based estimators with 
the MMSE estimator. To gauge the level of 
complexity, the number of floating-point 
operations (FLOPs) is adopted as a measure. 
Any operation involving two numbers, such as 
addition, subtraction, multiplication, and 
division, is viewed as a FLOP. The LSTM 
complexity can be approximated [20] as: 

𝑪𝑳𝑺𝑻𝑴 ≈ 𝓞(𝟒𝒉𝒔
𝟐𝑵)𝟐 (13) 

where ℎ𝑠 and 𝑁 denote the number of hidden 
layers and the number of subcarriers, 
respectively, considering the forward and 
backward propagation. Upon examination of 
equations (LS) and (LMMSE), it becomes 
evident that the LS estimator’s complexity is of 
the order 𝒪(𝑁𝑃). Additionally, the complexity 

of the MMSE estimator can be represented 
as 𝒪(𝑁3) due to the calculations related to 
matrix inversion and vector multiplication. In 
Fig. 3, it is apparent that the complexity of the 
suggested algorithm and the MMSE estimator 
can be compared to the number of subcarriers 
(N). It becomes clear that as the quantity of 
samples rises, the complexity of the suggested 
algorithm will be notably less than that of the 
MMSE estimator. 

 

Fig. 3 Computational Complexity Comparison 
of ML Estimator and LMMSE. 

6.SIMULATION RESULTS AND 
DISCUSSION 
This section presents the results along with a 
discussion of the DL-based signal constellation 
performance for the underwater acoustic 
channel in the OFDM communication system. 
Basically, the simulation outcomes for all deep 
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learning modeling, training, and testing in this 
section were achieved by utilizing the MATLAB 
2022b Deep Learning Toolbox on an i7 
processor operating at 1.8 GHz, coupled with an 
8-GB RAM. Additionally, it is assumed that the 

suggested signal constellation algorithm based 
on DL was executed on the receiver node over 
an underwater channel model, as shown in Fig. 
4. Furthermore, Table 2 provides an overview 
of the simulation and channel model settings. 

 

Fig. 4 Channel Characteristics. 
Table 2 Simulation and Channel Parameters. 

Parameter  Value 
Modulation Technique QPSK 
Channel Bandwidth 8kHz 
Channel delay 6 ms 
OFDM subcarriers (𝑁) 64, 128 

Pilot subcarriers (𝑁𝑝) 𝑁𝑝 = 𝑁, 𝑁𝑝 =
𝑁

2
, 𝑁𝑝 =

𝑁

4
  

 

6.1.Bit Error Rate (BER) Performance 
In this section, the performance of a learning-
based signal constellation in a multipath 
scenario was investigated. The effectiveness of 
this constellation with the LS and MMSE 
methods, specifically looking at the Bit Error 
Rate (BER), was compared. The present 
simulations kept network and training 
parameters consistent, except for varying the 
layer type depending on the DL-based 
estimator used. First, the MMSE and LS 
channel estimations were introduced to 
evaluate the BER of the proposed signal 
constellation-based DL for different pilot 

subcarriers at 𝑁𝑝 = 𝑁, 𝑁𝑝 =
𝑁

2
, and 𝑁𝑝 =

𝑁

4
. 

Then, to test the effectiveness of the proposed 
DL system performance under a limited 
bandwidth underwater channel, two scenarios 
were conducted, CP = 0 and CP = 16, 
respectively. The first set of analyses examined 
the impact of pilot length on the BER 
performance when CP = 0. Figure 5 provides 
the results of the BER performance of the 
proposed DL with different subcarriers lengths 
at CP = 0. It is apparent from this figure that the 
DL outperformed MMSE and LS when the 
length of the pilots was less than 𝑁. This result 

is interesting and fits the underwater 
environment due to the bandwidth limitation 

nature. In Fig. 5 (a), where 𝑁𝑝 =
𝑁

4
, there is a 

clear trend of consistency in the performance of 
DL, as its performance stabilized when 
increasing 𝑁. On the other hand, it has been 
noticed that the performance of MMSE and LS 
was affected when the number of pilots was 
reduced. Interestingly, there is a correlation in 
the results shown in Fig. 5 (c) and Fig. 5 (e) that 
support the consistency of these results in 
which the MMSE and LS diverge when the 
number of pilot subcarriers is reduced. This 
behavior is because the channel estimation fails 
to estimate the channel accurately. In terms of 
complexity, reducing the number of pilots and 
subcarriers means reduced complexity, 
required for implementing embedded systems 
for other applications, such as 5G networks. 
However, with successive increases in pilot 
subcarriers, the MMSE and LS converged 
further to the DL performance, as depicted in 
Fig. 5 (b), Fig. 5 (d), and Fig. 5 (f). It is more 
realistic because the MMSE accuracy increased 
once more when information came with CSI 
through the pilots. Turning to Fig. 5 (f), where 
𝑁𝑝 = 𝑁 = 128, it can be noticed that the MMSE 
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outperformed the DL. This behavior occurred 
because the Bit Error Rate (BER) reached its 
saturation point, meaning that the performance 
of the signal constellation used in DL has 
already reached its potential. At this stage, 
there is no room for improvement. In Fig. 6, an 
improvement in deep learning performance 
was observed when increasing the cyclic prefix 
length despite increasing the number of 
subcarriers length. This improvement is a 
promising result and is inherent due to the 
presence of CP, protecting the frame from 
channel effects. Thus, increasing the CP length 
helped to reduce the errors caused by the 
channel. Compared to Fig. 5 (d) and Fig. 5 (f), it 

was noted in Fig. 6 (d) and Fig. 6 (f) that the 
performance of the proposed system improved 
despite the increase in the length of the pilots 
because the CP combats the channel length. 
Thus, it should be noted that the number of 

samples 𝑁𝑝 required for the system to achieve 

performance levels equal to those of perfect CSI 
is contingent upon the delayed spread of the 
channel. This behavior is because the length of 
the channel vector was determined by the 
channel delay spread. This finding has 
important implications for developing an 
embedded DL algorithm for terrestrial 
channels in addition to underwater channels. 

 

(a) 64 subcarriers 

 

(b) 128 subcarriers 

 

(c) 64 subcarriers 

 

(d) 128 subcarriers 

 

(e) 64 subcarriers 

 

(f) 128 subcarriers 
Fig. 5 BER at CP = 0 with Different Subcarriers and 𝑁𝑝 =

𝑁

4
, 𝑁𝑝 =

𝑁

2
, and 𝑁𝑝 = 𝑁. 
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(a) 64 subcarriers 

 

(b) 128 subcarriers 

 

(c) 64 subcarriers 

 

(d) 128 subcarriers 

 

(e) 64 subcarriers 

 

(f) 128 subcarriers 
Fig. 6 BER at CP = 16 with Different Subcarriers and 𝑁𝑝 =

𝑁

4
, 𝑁𝑝 =

𝑁

2
, and 𝑁𝑝 = 𝑁. 

6.2.Constellation Diagram 
Figure 7 shows the constellation of MMSE at 
CP = 0. Based on the constellation diagrams, it 
appears that the MMSE channel estimation was 
quite effective in enhancing noise tolerance and 
improving the quality of constellations, 
especially when dealing with SNRs. The overall 
shape of the constellation resembles a square 
with four defined groups of points in line with 
QPSK modulation. However, there are 
variations from a square, especially at lower 
SNRs (10dB and 20dB), as shown in Fig. 7 (a) 

and Fig. 7 (b), which might be attributed to 
imperfections in the way the channel is 
estimated or how the modulation is performed. 
As the SNR increased from 30dB to 40dB, in 
Fig. 7 (c) to Fig. 7 (d), it was observed that the 
constellation points gathered closer to their 
positions. This behavior demonstrates 
enhanced resilience towards noise and a 
decrease in errors. Such behavior aligns with 
the authors' expectations for MMSE channel 
estimation. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7 Constellation Diagrams MMSE at 64 Subcarriers and 𝑁𝑝 =
𝑁

4
 with Different SNRs. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 8 Constellation Diagrams MMSE at 128 Subcarriers and 𝑁𝑝 =
𝑁

4
 with Different SNRs. 

It is important to note how the constellation 
points are packed together. As presented in Fig. 
8, when using 128 subcarriers, the points will 
appear packed compared to when using 64 
subcarriers. This distinction should be 
noticeable in SNRs where the clustering is more 
compact. The primary factor that distinguishes 
the constellation diagrams is the density of 
points. In the case of 128 subcarriers, three 
times many points will lead to a denser and 
more tightly packed constellation. 
6.3.Confusion Matrix 
The confusion matrix in Fig. 9 depicts the 
performance of the proposed DL at 𝑁 =64 
subcarriers. It can be shown from this figure 

that once the SNR was 10 dB, Fig. 9 (a), the 
performance was relatively low for all classes, 
with an accuracy of about 52%. An 
improvement was found between Fig. 9 (a) and 
Fig. 9 (b), in which the SNR was increased to 
20dB, and the accuracy was raised to 74%. This 
behavior is because the escalation in the SNR 
escalates the achievement of class 1, and a 
better classification is obtained. Interestingly, 
an excellent classification ability was observed 
in Fig. 9 (c), with an SNR of 30 dB and an 
accuracy of 97%. Few off-diagonal elements 
were shown in this matrix, indicating minimal 
confusion between classes.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Fig. 9 Confusion Matrices at 64 Subcarriers and 𝑁𝑝 =

𝑁

4
 with Different SNRs. 
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As shown in the previous analyses, Fig. 9 
reinforces these results. As noticed when the 
SNR increased, the model’s performance 
clearly improved. While the model performed 
exceptionally and achieved an accuracy of 
99.9% when the SNR was 40dB, as shown in 
Fig. 9 (d), focusing on the remaining 
misclassifications and fine-tuning them will 
further increase the performance. Turning to 
analyze the confusion matrices in Fig. 10, in 
which the performance of the DL was evaluated 

at 128 subcarriers and 𝑁𝑝 =
𝑁

4
. Figure 10 (a), 

Fig. 10 (b), Fig. 10 (c), and Fig. 10 (d) represent 
the confusion matrices at 10dB, 20dB, 30dB, 
and 40dB, respectively. In Fig. 10 (a), where 
𝑁 =128, and the SNR was relatively low, the 
accuracy was about 36.5%. A comparison with 
Fig. 9 (a), in which 𝑁 =64, revealed that at 10 
dB, the model’s performance noticeably 
declined as the constellation size (𝑁) increased, 
indicating that the model had difficulty in 

discerning constellations, particularly when the 
SNR was low, and the number of subcarriers 
was high. With successive increases in SNR, the 
accuracy moved further to 87% and 99% at 
20dB and 30dB in Fig. 10 (b) and Fig. 10 (c), 
respectively. A closer look at Fig. 10 (c), the 
matrix depicts a few elements off the diagonal, 
indicating little confusion between classes. The 
misclassifications that do occur involve several 
instances, typically in a single bit. In Fig. 10 (d), 
all the classes showed performance 
improvement, proving the model’s capability to 
accurately differentiate between constellations 
at an SNR of 40 dB with a subcarrier size of 128. 
The matrix clearly indicated no elements 
outside the diagonal, confirming no confusion 
between the classes. In this scenario, the 
model’s exceptional capabilities are showcased 
as it demonstrated performance in situations 
involving high SNR and extensive sets of 

subcarriers with 𝑁𝑝 =
𝑁

4
. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 10 Confusion Matrices at 128 subcarriers and 𝑁𝑝 =
𝑁

4
 with different SNRs. 
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7.CONCLUSION 
In this study, a powerful supervised deep 
learning approach is introduced to predict 
signal constellations. The focus was on a system 
that uses an OFDM system to transmit data 
through a selective channel that varies over 
time. To begin, the performance of the 
suggested algorithm was assessed by measuring 
the MMSE and LS in channel estimation. The 
findings demonstrated that the DL algorithm 
outperformed LS and MMSE when using zero 
cyclic prefix and a small number of pilot 
samples with an accuracy of 100%. In 

particular, when CP = 0 at 𝑁𝑝 =
𝑁

4
, the proposed 

DL-based signal constellation exhibited a BER 
performance gain of 10dB and 12dB compared 
to the MMSE and LS channel estimation 
algorithms. In addition, evaluating the 
complexity of the suggested deep learning 
algorithm was performed based on FLOPS. It 
was found that the algorithm had a lower level 
of complexity than MMSE. Furthermore, the 
robustness of the proposed algorithm was 
examined against a longer cyclic prefix, and the 
results proved a stable profile in terms of BER 
performance. For future work, the complex-
valued DL has the potential to be explored 
further to improve its usefulness and 
significance in underwater communications. 
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