

ISSN: 1813-162X (Print); 2312-7589 (Online)

Tikrit Journal of Engineering Sciences

available online at: http://www.tj-es.com

Behavior of Reinforced Shotcrete Structural **Incorporating Plastic Fibers**

Abdulfatah A. Jawhar ** *a, Yousif A. Mansoor ** *b, Abdulkader Ismail Al-Hadithi ** *b

a Government Contracts Division, University Headquarters, University of Anbar, Ramadi, Iraq. b Department of Civil Engineering, College of Engineering, University of Anbar, Ramadi, Iraq.

Keywords:

Compressive strength; Flexural one-way slab; Plastic fiber; Polypropylene fiber; Shotcrete.

Highlights:

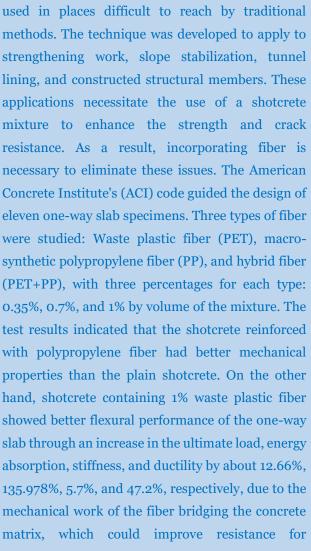
- Structural performance of Reinforced shotcrete one-way slab containing plastic fiber through finding crack maps, and load-deflection behavior.
- Improvement of an experimental program to produce shotcrete concrete by developing a shotcrete machine.
- The researcher faced two challenges, first: how to control shooting concrete with plastic without segregation and second- how to choose suitable mixing that includes plastic fiber.

ARTICLE INFO

Article history:

Received 15 Jan. 2024 03 May 2024 Received in revised form 09 Oct. 2024 Accepted Final Proofreading 22 Aug. 2025 Available online 29 Aug. 2025

© THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE. http://creativecommons.org/licenses/by/4.0/


Citation: Jawhar AA, Mansoor YA, Al-Hadithi AI. Structural Behavior of Reinforced Shotcrete Slabs Incorporating Plastic Fibers. Tikrit Journal of Engineering Sciences 2025; 32(4): 1975. http://doi.org/10.25130/tjes.32.4.2

*Corresponding author:

Abdulfatah A. Jawhar

Government Contracts Division, University Headquarters, University of Anbar, Ramadi, Iraq.

Abstract: Shotcrete technology is developed to be formation and development cracks.

السلوك الهيكلى لألواح الخرسانة المسلحة المعززة بالألياف البلاستيكية

عبدالفتاح عبدالواحد جوهر ١، يوسف عبدالواحد منصور٢، عبدالقادر اسماعيل الحديثي٢

- أ شعبة العقود الحكومية/ رئاسة الجامعة/ جامعة الانبار/ الرمادي العراق.
 - ⁷ قسم الهندسة المدنية/كلية الهندسة / جامعة الانبار / الرمادي العراق.

الخلاصة

طُورت تقنية الخرسانة المرشوشة لاستخدامها في الأماكن التي يصعب الوصول إليها بالطرق التقليدية. طُورت هذه التقنية لتطبيقها في اعمال التقوية، وتثبيت المنحدرات، وتبطين الأنفاق، والعناصر الإنشائية المُنشأة. تتطلب هذه التطبيقات استخدام خليط من الخرسانة المرشوشة لتعزيز المتانة ومقاومة التشققات. ونتيجةً لذلك، يُعدّ دمج الألياف ضروريًا للتخلص من هذه المشكلات. وقد استرشد تصميم إحدى عشرة عينة بلاطة أحادية الاتجاه بكود المعهد الأمريكي للخرسانة (ACI). دُرست ثلاثة أنواع من الألياف: ألياف البلاستيك المُهدرة (PP)، والألياف البولي بروبيلين الاصطناعية الكبيرة (PP)، والألياف المجينة (PET)، بثلاث نسب مئوية لكل نوع: ٥٠,٠٪، و٧,٠٪، و١٪ حجمًا من الخليط. أشارت نتائج الاختبار إلى أن الخرسانة المرشوشة المُدعّمة بألياف البولي بروبيلين تتمتّع بخصائص ميكانيكية أفضل من الخرسانة المرشوشة العادية. من ناحية أخرى، أظهرت الخرسانة الرشاشة المحتوية على ١٪ من ألياف البلاستيك المهدرة أداء أفضل في الانحناء للبلاطة أحادية الاتجاه من خلال زيادة الحمل الأقصى، وامتصاص الطاقة، والصحاب، والسحب بنحو ٢٢,٦٦٪، و١٣٥٩٪، و٧,٥٪، و٧,٠٪ على التوالي، وذلك بسبب العمل الميكانيكي للألياف التي تربط مصفوفة الخرسانة، مما قد يحسن مقاومة الشقوق التكوينية والتطورية.

الكلمات الدالة: قوة الضغط؛ بلاطة أحادية الاتجاه قابلة للانحناء؛ ألياف بلاستيكية؛ ألياف البولي بروبيلين؛ الخرسانة الرشاشة.

1.INTRODUCTION

According to the American Concrete Institute (ACI) committee in 1995, shotcrete can be defined as pneumatically sprayed concrete with high velocity, which makes it a good choice in places and surfaces that are difficult to utilize the traditional concrete placement method, such as structural repairing and rehabilitation works, tunnel lining, and rock, and slope stabilization [1]. Six potential shotcrete failure modes were identified by Barrett and provides McCreath. a Fig. 1 representation of these modes, including adhesion loss, flexural failure, direct shear failure, punch shear failure, compressive failure, and tensile failure. The most typical type of shotcrete failure is flexural failure, for example, which is often related to the bulking of the rock mass and can follow a variety of failure mechanisms for rock mass [2-4]. In 1920, Fuller tested the first slab cast by shotcrete (Gunite) at Lehigh University. The slab's span (2.4 m) and thickness (82.6 mm) were tested for 14 years. During that time, the slab deflected by 50 mm, and the stress in the reinforced steel bar reached 160 kN. No further deflection was measured after the third year [5]. Besides that,

Kompen [6] performed bending experiments on one-way slabs of steel fiber-reinforced shotcrete and plain shotcrete. Steel fiber was used with the type of end-hook 'Dramix-1' ZC 30/50. Tests on cubes showed that the shotcrete had an unconfined compressive strength of 50 MPa. Peak strength increased by approximately 85 percent and 185 percent, respectively, for these slabs with 1.0 and 1.5 volume fractions of fibers. For the same volume fraction of fibers of 1.0 and 1.5, the ductility of the fiber-reinforced slabs was enhanced by around 20 and 30 times, respectively. Shotcrete more often uses steel or synthetic fibres due to their enhanced impact resistance, fracture toughness, shear, and flexural capacity with typical addition rates (0.3-1) percent volume [7]. Synthetic fibers cover common types of fiber, such as PP, polyester, polyethylene, and nylon. PP is considered the most commercially used polyolefin fiber [8-10]. Malmgren [11] investigated the effect of PP and steel fiber on shotcrete. The result showed that the energy absorption was almost the same for shotcrete reinforced with these two types of fiber.

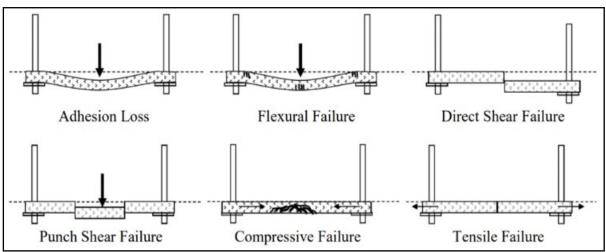


Fig. 1 Failure Modes of Shotcrete [2].

According to Shah's research shotcrete's compressive strength could be increased by over 20% by adding 3 kg/m3 of polypropylene fiber. The tensile and flexural strengths would also continue to improve as the amount of fiber increased. The research concluded that shotcrete was better than ordinary concrete in terms of mechanical properties. Waste polyethylene terephthalate (PET) fiber is made from recycled PET bottles; such beverage bottles are classified as an environmentally preferable fiber, and it has been established that they significantly decrease the shrinkage of concrete and improve its ductility. Furthermore, engineers have recently been encouraged to utilize these waste materials in engineering construction, like shotcrete support, due to the environmental benefits of consuming these disposal materials [13, 14]. Jawheer [15] investigated the use of waste plastic as coarse aggregate and fiber in shotcrete. The compressive and flexural test results confirmed that adding 0.5% of plastic fiber improved shotcrete concrete's strength performance by approximately 5.11% after 7 days. Hussein [16] conducted an experimental investigation on the compressive and flexural strength of concrete containing waste plastic fiber (PET), PP fiber, and their incorporation together covered forty mixes. From the results, the compressive strength of the concrete containing PP fiber was superior to that reinforced with waste plastic fiber (PET) up to 1.5% volumetric dosage of the polypropylene fiber, which reached 6.6% as the maximum value. Conversely, the study revealed that PET fibers significantly enhanced the flexural behavior of concrete. The percentage of hybrid fiber (25% PET and 75 % PP) was the best to enhance the flexural strength of concrete. Al-Hadithi et al. investigated how waste plastic fiber, in varying percentages between 0.5% and 2%, affected the structural behavior of beams made of reinforced concrete. The findings demonstrated that adding fiber raised both the maximum load and the ductility index up to 1% before they declined. In addition, the mode of failure changed to become more ductile. The present research aims to contribute to the effective use of waste plastic bottles as fibers in shotcrete to reduce environmental pollution resource consumption natural investigating the effect of the addition of polypropylene (PP) fiber, waste plastic fiber (PET) fiber, and hybrid (PET + PP) with different volume fractions on the flexural performance of a one-way reinforced shotcrete slab. The novelty of this research compared to the previous studies is in using different dimensions and types of fibers, as well as employing the shooting process using a local machine for casting shotcrete.

2.EXPERIMENTAL PROGRAM 2.1.Materials

In this study, shotcrete mixes were prepared using ordinary Portland cement (OPC) that has been certified under Iraqi specifications (IQS No. 5/2019) [17]. The chemical and physical properties of the cement used are shown in Tables 1 and 2, respectively. The maximum sizes of the aggregate (fine and coarse) utilized were 4.75 mm and 10 mm, respectively, and they both agreed with Iraqi specifications (IQS) No. 45/84 [18]. The sieve analysis of fine and coarse aggregate is seen in Fig. 2 and Fig. 3. Waste plastic drink bottles were chopped using a shredding machine to make PET fiber with an aspect ratio of 22.24. PET fiber had a rectangular form and dimensions of 27 × 4 × 0.3 mm (length \times width \times depth). The density of the PET fiber was 1370 kg/m³, and its tensile strength was 105 MPa. While a polypropylene (PP) fiber's length was 60 mm. These fibers were chopped with scissors to a length of 30 mm. The density of PP fiber was 910 kg/m², and its tensile strength was 465 MPa. These two types are shown in Fig. 4. The present research has been conducted using Master Glenium® 51 superplasticizer as a high-range water-reducing material with physical properties, as shown in Table 3. Sika® Rapid-1 was used in this investigation. For the reinforcement of reinforced shotcrete (RS) slabs, steel bars with a diameter of 8 mm were used. ASTM A615 [19] was followed in the testing of the steel bar. The test results of the tensile test are shown in Table 4. The bottom of the slab was reinforced longitudinally with 308mm bars transversely with 408mm bars, according to ACI-318-sec. 7.6.1.

Table 1 Chemical Compositions of Cement Used.

Used.		
Chemical	Content	The Boundary of
Composition	Percent	Iraqi
	by	Specification
	Weight	No.5/2019
Alumina (AL ₂ O ₃)	4.86	
Silica (SiO ₂)	20.15	
Lime (Cao)	62.86	
Iron Oxide (Fe ₂ O ₃)	5.2	
Sulfate (SO ₃)	2.32	Not more than 2.8 %
Loss of ignition (L.O.I)	1.8	Not more than 4%
Magnesia (MgO)	3.07	Not more than 5%
Insoluble residue (I.R)	0.46	Not more than 1.5 %
Lime saturation factor	0.98	0.66-1
(L.S.F)		
Mai	n Compou	nds

14.62

4.11

49.5

19.40

C₄AF

СзА

C₃S

C₂S

Table 2 Physical Properties of Cement Used.

Tubic = 1 hybical 110 per ties of cement esea:						
Physical properties	Result	Boundary Iraqi specification No.5/2019				
Fineness (Blain	3344	≥ 250 m²/kg				
method) (m ² /kg)						
Autoclave %	0.1	≤ 0.8%				
Soundness (mm)	1	≤ 10 mm				
Final setting time	220	≤ 10 hr				
(minutes)						
Initial setting time	165	≥ 45 min				
(minutes)						
The morta	r's compressi	ive strength				
28 days (MPa)	48	≥ 42.5 MPa				
2 days (MPa)	22	≥ 10 MPa				

Table	3	Physical	Properties	of
MasterG	leniun	n® 51 Superi	olasticizer	

master oremanies 5	1 Duper plasticizer.
Properties	Value
Color	Light Brown
Form	Viscous Liquid
Relative density	1.1 @ 20 °C
Viscosity	128 +/ - 30 cps @ 20 °C
pН	6.6

Table 4 Steel Bar Properties.

14010 4	teer Bu	TTOPCE	11001	
Diameter	Actual	Yield	Ultimate	Elongation
	size	Stress	stress	(%)
	(mm)	(MPa)	(MPa)	
8 mm	7.8	491	688	18

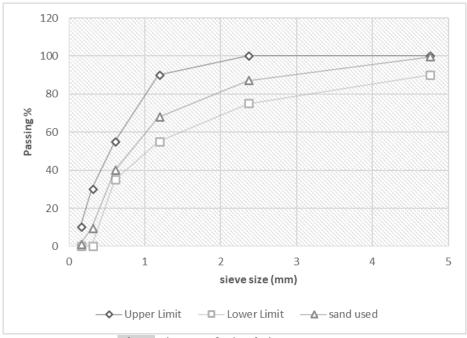


Fig. 2 Sieve Analysis of Fine Aggregate.

Fig. 3 Sieve Analysis of Coarse Aggregate.

Fig. 4 PET and PP Fibers Used for Shotcrete.

2.2.Mixing Proportions

The ACI PRC-506-16 standards and previous research [20, 21] guided the design of the shotcrete concrete mix. The control mix's compressive strength was designed to be 40 MPa. Table 5 presents the quantities of mixtures used to cast shotcrete specimens for three different mix types based on the types of fibers. Following ASTM C1611/C1611M-18, a slump flow test of freshly laid concrete was conducted [22]. The slump flow test was 700 mm for the control mix (0% fiber) with a water/cement ratio of 0.368. For this

investigation, eleven slab specimens were prepared and sorted into four groups: Group-1 comprises a reference mixture that includes plain shotcrete (FRS), Group-2 comprises three mixtures of shotcrete reinforced with waste plastic (PET) fiber (WFRS-0.35, WFRS-0.7, WFRS-1), Group-3 comprises three mixtures of shotcrete reinforced with macro-synthetic (polypropylene) fiber (PFRS-0.35, PFRS-0.7, PFRS-1), and Group-4 comprises three mixtures of shotcrete reinforced with hybrid fiber (HFRS-0.35, HFRS-0.7, HFRS-1).

Table 5 Proportions of Material Used in Shotcrete Mixes.

Cnoun	•	Component K _g /m ³							
Group Num.	Symbol	Cement	Sand	Gravel	Water	Superplasticizers (L/ m³)	Accelerator(L/ m³)	PET fiber	Synthetic fiber
Group-1	FRS-o	498	881	738.5	182	3.12	21.9	0	0
	WFRS-1	498	881	738.5	182	3.12	21.9	1.37	0
Group-2	WFRS-0.7	498	881	738.5	182	3.12	21.9	0.96	0
	WFRS-0.35	498	881	738.5	182	3.12	21.9	0.48	0
	PFRS-1	498	881	738.5	182	3.12	21.9	O	0.91
Group-3	PFRS-0.7	498	881	738.5	182	3.12	21.9	О	0.64
	PFRS-0.35	498	881	738.5	182	3.12	21.9	O	0.32
	HFRS-1	498	881	738.5	182	3.12	21.9	0.69	0.46
Group-4	HFRS-0.7	498	881	738.5	182	3.12	21.9	0.48	0.32
	HFRS-0.35	498	881	738.5	182	3.12	21.9	0.69	0.16

2.3.Experimental Sets

To compute the compressive strength of shotcrete concrete, ASTM C1604/C1604M [23] recommended a procedure to prepare specimens (for each mix), including three-cylinder cores (75 mm diameter \times 150 mm height) extracted from shotcrete panels (500× 500× 150) mm. Three prisms with dimensions of 100× 100× 350 mm were used for the determination of flexural strength. Ten one-

way slab specimens with dimensions of 350 mm in width, 100 mm in depth, and 800 mm in length for each mix were cast to check the flexural performance of the slab. Fig. 5 shows the geometry and reinforced details of the RS slabs. All samples, i.e., cores, prisms, and slabs, were cured in the water bath for 28 days. Fig. 6 shows the casting. Fig. 7 shows the cutting processes of all samples used.

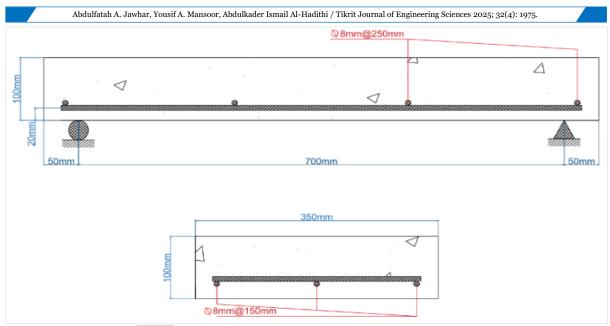


Fig. 5 Geometry and Reinforced Details for the RS Slabs.

Fig. 6 Casting with Wet-Shotcrete Process: A-Casing Concrete Panel for Compression Test, (B) Casting of Concrete Prisms for Flexural Test, and (C) Casting One-Way Slab Specimens.

Fig. 7 Extracting and Cutting Process.

2.3.Compressive and Flexural Prism Tests

Three 75×150 mm cores were prepared, and the average of these core results was recorded. The age of testing was 28 days. The compressive strength test was conducted in accordance with

ASTM C1604 [23] using a hydraulic machine with a maximum load capacity of 2000 kN, as illustrated in Fig. 8. Flexural strength of shotcrete tested with prisms at 28 days, according to ASTM C78-02 [24] and ASTM C1609 [25].

Fig. 8 (A) Compressive Testing of Specimens, (B) Core Samples.

2.4.Flexural Test of One-Way Slab Specimens

The flexural performance of the RS slabs was examined using a hydraulic machine with a 500 kN static loading capacity. The span of the specimen between supports was 700 mm, and the roller supports were made of steel to sustain loads without deforming, to distribute the

affecting load at two central points (P/2) on the specimen loading system. A data logger and a computer were used to electronically record the experimental data. The deflection of a one-way slab was measured using three Linear Variable Differential Transformer (LVDT) indicators installed on the bottom surface of the slab utilizing special holders, as shown in Fig. 9.

Fig. 9 Setup Test with Three LVDT Indicators.

3.RESULTS and DISCUSSIONS 3.1.Mechanical Properties

Table 6 describes the compressive and flexural strength results, with an average of three specimens aged 28 days. The waste plastic fiber tends to decrease in compressive strength compared to the reference shotcrete mix. This result matches the finding of Mohammed [26].

Microcracks, formed when the matrix became more porous, could be the reason why the compressive strength seemed to decrease as the WF content increased [27]. On the other hand, mixtures including polypropylene fibers showed increases in compressive strength of around 8.2%, 2.8%, and 3.9% for fiber percentages of 0.35, 0.7, and 1.0%, respectively.

Table 6 Mechanical Properties Results.

	Compressive strength (MPa) Flexural strength (MPa)					
Group	Mix symbol	value	(%) increase	value	(%) increase	
Group-1	FRS-o	34.64	-	3.86	=	
	WFRS-1	27.32	-20.91	3.79	-1.81	
Group-2	WFRS-0.7	30.28	-12.34	4.17	8.12	
	WFRS-0.35	29.38	-14.91	4.75	23.12	
	PFRS-0.35	37.38	8.21	4.6	19.21	
Group-3	PFRS-0.7	35.49	2.81	5.14	33.21	
	PFRS-1	35.9	3.91	6.25	62.1	
	HFRS-0.35	29.15	-15.7	5.14	33.21	
Group-4	HFRS-0.7	32.21	-6.76	5.1	29.91	
	HFRS-1	34.04	-1.51	4.42	14.56	

Except 1% waste plastic fiber, which experienced a 1.8% loss in flexural strength due to the waste plastic's flaky structure, causing voids and porosity to develop, the flexural strength generally increased with the addition of fibers. The shotcrete enhanced with 1% polypropylene fiber showed the most improvement in flexural strength, measured at 62%. Therefore, in terms of hybrid fiber, combining polypropylene and waste plastic fiber may provide greater outcomes than utilizing waste plastic fiber alone.

3.2.Flexural Behavior of One-Way Slab The failure mode of all tested slabs was flexural failure, as shown in Figure 10 and Table 7. Also, Table 7 describes the load, deflection (δ) in the middle third of the slab span, and failure. Shotcrete slabs containing 1% waste plastic were the worst. The deflection value was slightly high due to the small depth of the slab specimens, which gave a low value for the moment of inertia.

Fig. 10 Flexural Behavior of One-Way Slab Specimens.

Table 7 Results of Slab Tested.

		First crack load stage		% Ultimate l increase stage				Crack width	
Group	Mix symbol	P _{cr} (kN)	δ _{cr} (mm)	of P _{cr}	P _u (kN)	δ _u (mm)	of Pu	mm	
Group-1	FRS-o	18	0.62		45.95	9.21		1.7	-
	WFRS-0.35	20	0.896	11.11	47.7	10.1	3.67	1.85	8.82
Group-2	WFRS-0.7	18	1.06	0	40.1	3.27	-14.59	1	-41.12
	WFRS-1	27	1.33	50	52.61	13.99	12.66	1	-41.12
	PFRS-0.35	19	0.929	5.55	45.3	11.2	-1.43	0.95	-44.12
Group-3	PFRS-0.7	17	0.619	-5.55	50.7	9.4	9.37	1.45	-14.71
	PFRS-1	17	0.61	-5.55	52.61	11.93	12.66	1.4	-17.65
	HFRS-0.35	9	0.97	-50	44.8	6.3	-2.57	1.3	-23.53
Group-4	HFRS-0.7	11	0.48	-38.88	41.8	9.1	-9.93	0.9	-47.06
	HFRS-1	14	1.3	-22,22	34.9	11.7	-31.66	1	-41.18

3.2.1.Load-Deflection Relationship

Generally, when subjecting a gradually increasing load to the slab specimen, the deflection increased linearly in an elastic way with the applied load. The slab's deflection developed more quickly as the cracks began to appear. After the growth of cracks in the slab, the curve of load deflection maintained a linear path until reinforcement yielded. After that point, the slab's deflection kept developing without a noticeable increase in load, as shown in Fig. 11. There was no compatibility in some results of load deflection with the fiber content, which may be due to the random distribution of fiber through the shooting and casting processes that led to these outcomes. For WFRS-0.35 and WFRS-1, the reinforced shotcrete slab showed a significant increase in first crack load of about 11.11% and 50%, respectively. The use of waste plastic fiber increased the shotcrete's modulus of rupture, delaying the appearance of the first crack. Group-2 and Group-3 showed the highest value

in the slab's ultimate loading capacity when they used 1% fiber. Compared to the reference shotcrete slab, both waste plastic and polypropylene fiber increased the ultimate load by approximately 12.66%. Shotcrete slabs with 1% waste plastic fiber also showed maximum deflection at the first crack load and at the ultimate load measured by the LVDT in the middle of the slab span. The deflection at the first crack and ultimate load was 1.33 and 13.99 mm, compared to 0.62mm and 9.21 mm, respectively, for the reference shotcrete slab, due to the high percentage of fiber content that allowed a high level of deflection. All slabs that contained fiber showed a decrease in the crack width compared to the reference shotcrete slab, except the slab that included 0.35% waste plastic, which appeared to increase the crack width by about 8.82%. Sunaga [28] illustrated that the increase in fiber volume led to a minimized crack opening due to the increasing bridging force of the fiber at cracks.

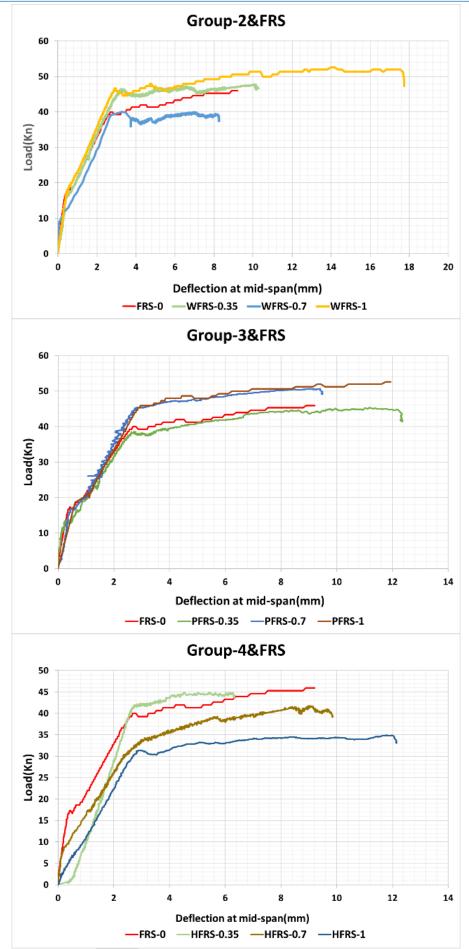


Fig. 11 Load-Deflection Curves of Tested Slabs.

3.2.2.Energy Absorption

This research defines energy absorption as the energy that the slab specimen absorbs during loading and prior to failure. Fig. 12 illustrates that the slab containing 1% waste plastic fiber exhibited the highest increase in energy absorption, by about 135.978% compared to the

reference shotcrete slab. In contrast, the slab containing 0.35% hybrid fiber showed the lowest energy absorption value by about 40.71%. Khaloo [29] investigated the effect of adding fiber on a slab's structural behavior. The results showed that the fiber could improve the slabs' energy absorption capacity.

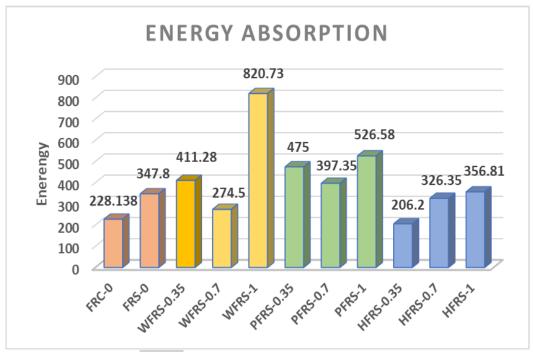


Fig. 12 Energy Absorption (J) for All Slabs.

3.2.3.StiffnessThe ability of a material to withstand deformation and regain its original shape after the removal of a load is known as stiffness. The stiffness of a one-way reinforced concrete slab was obtained by dividing the load that equals 45% of the ultimate load by the deflection that corresponds to this load, as shown in Fig. 13 [30, 31]. This percentage of 45% is due to the linear relationship between stress strain and up to 45% of the ultimate load for all concrete strengths. Fig. 13 illustrates the stiffness results.

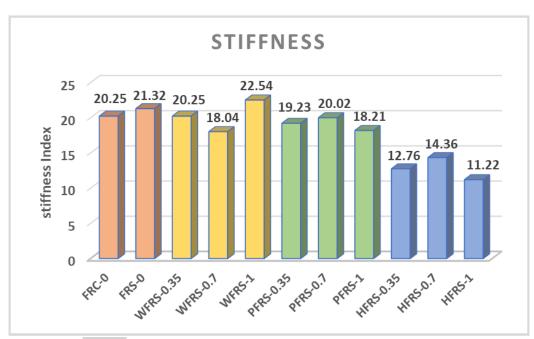


Fig. 13 Stiffness Index (kN/mm) for One-Way Slab Specimens.

In the presence of fiber in shotcrete, the stiffness of the slabs tested decreased, except for the 1% waste plastic fiber, which led to a slight increase in stiffness of about 5.7% due to the high content of fiber that worked to bond the mix and increase stiffness. The highest decrease in stiffness was recorded at 1% hybrid fiber, which reached about 47.4% compared to the reference shotcrete slab. The incorporation of fiber in the shotcrete mix led to a decrease in stiffness as a result of the formation of air pores and gaps, resulting in reduced slab stiffness under load. The same interpretation was included in the study of Jomaa'h [31]. Amer [32] investigated the impact of varying amounts of discarded plastic fiber on the stiffness of beams, and the outcome demonstrated that the fiber had an adverse influence on the stiffness.

3.2.4. Ductility Index

The ability of RC elements to stay in elastic deformation, with the capability to disperse the applied stress and provide sufficient indication before reaching the failure stage, is known as ductility. A yield point is a point on a curve where there is significant confusion. This behavior is due to the possibility of several specified yield points on the load-deflection curve. The ductility index results are illustrated in Fig. 14.

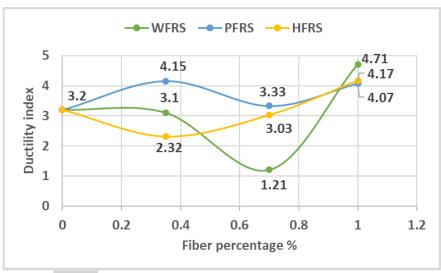


Fig. 14 Ductility Index Result for Tested Shotcrete Slabs.

The results show that using the shotcrete process to cast slabs can enhance the ductility of the slab compared to slabs cast by the conventional method. Polypropylene fiber showed a positive impact on the ductility index of shotcrete slabs, increasing by about 29.7%, 4.1%, and 27.2% for 0.35%, 0.7%, and 1% fiber, respectively. The waste plastic fiber and hybrid fiber showed an increase in ductility index with 1% fiber only, by about 47.2% and 30.3%, respectively. Fraternali [33] indicated through experiments that the addition of 1% waste plastic fiber can improve ductility better than the addition of the same percent of polypropylene fiber. This development may be related to the fiber's ability to bridge cracks driven by increased stress and to offer ductility after cracks have formed. In addition to the previously described effects, the fibers help to enhance the ultimate load and deflection of slabs, resulting in a greater area under the loaddeflection curve (energy absorption).

4.CONCLUSION

This study investigated the effect of plastic fiber (PET waste plastic and macro synthetic polypropylene) on the flexural behavior of a

one-way reinforced shotcrete slab. From the results, the following conclusions can be drawn:

- The compressive strength of shotcrete containing polypropylene fiber enhanced by 8.2%, 2.8%, and 3.9% for percentages of 0.35%, 0.7%, and 1% fiber, respectively. Whereas the presence of waste plastic and hybrid fiber in the shotcrete mix negatively influenced the compressive strength.
- The flexural strength of prism specimens increased with the addition of fiber, except for the WFRS-1, which showed a slight decrease in flexural strength compared to the reference shotcrete by about 1.8%.
- WFRS-1 showed the best enhancement in the flexural performance of a one-way slab. The WFRS-1 slab showed an increase in the ultimate load, energy absorption, stiffness, and ductility by about 12.66%, 135.978%, 5.7%, and 47.2%, respectively.
- The crack width of the slab decreased by incorporating all the types percentages of fiber used, except for 0.35% waste plastic, which increased the crack width by 8.82%.

- In terms of stiffness, all slabs showed a decrease in stiffness except the aforementioned WFRS-1 slab, and the highest decreasing ratio was 47.4% for the HFRS-1 slab.
- Polypropylene fibers showed a positive impact on the ductility index of shotcrete slabs, increasing by 29.7%, 4.1%, and 27.2% for 0.35%, 0.7%, and 1% fiber, respectively.
- The results clearly showed that propylene fiber enhanced the mechanical properties of shotcrete, while the addition of 1% of waste plastic improved the flexural performance of the shotcrete slab. Therefore, to fully comprehend the behavior of fiber in shotcrete concrete, it should employ a higher percentage and a broader range of fiber content. Additionally, it should employ a variety of shotcrete test methods comprehensively evaluate the properties of the material.

ACKNOWLEDGEMENTS

The authors are grateful to the Department of Civil Engineering, College of Engineering, and the University of Anbar for the grant and for permitting the authors to commence this research, to conduct the necessary research work, and for using the laboratory.

NOMENCLATURE

NOMENCI	LATURE
FRS-o	fiber of reinforced shotcrete with o
	percent fiber.
WFRS-0.35	waste plastic fiber of reinforced
	shotcrete with 0.35 % fiber.
WFRS-0.7	waste plastic fiber of reinforced
	shotcrete with 0.70 % fiber.
WFRS-1	waste plastic fiber of reinforced
	shotcrete with 1.00 % fiber.
PFRS-0.35	polypropylene plastic fiber of reinforced
	shotcrete with 0.35 % fiber.
PFRS-0.70	polypropylene plastic fiber of reinforced
	shotcrete with 0.70 % fiber.
PFRS-1	polypropylene plastic fiber of reinforced
	shotcrete with 1.00 % fiber.
HFRS-0.35	Hybrid plastic fiber of reinforced
	shotcrete with 0.35 % fiber.
HFRS-0.70	Hybrid plastic fiber of reinforced
	shotcrete with 0.70 % fiber.
HFRS-1	Hybrid plastic fiber of reinforced
	shotcrete with 1.00 % fiber.
	Greek symbols
δ	deflection (mm)

REFERENCES

- [1] El Naggar H, Sabouni A. State-of-the-Art Review for the Application of Shotcrete in Tunnel Lining Rehabilitation. Journal of Engineering and Applied Sciences 2009; 2(1): 1-12.
- [2] Barrett S, McCreath D. Shotcrete Support Design in Blocky Ground: Towards a Deterministic Approach.

 Tunnelling and Underground Space Technology 1995; 10(1): 79-89.

- [3] Fernandez-Delgado G. Structural Behavior of Thin Shotcrete Liners Obtained from Large Scale Tests.

 Symposium Paper 1977; 54: 399-442.
- [4] Holmgren J. Thin Shotcrete Layers Subjected to Punch Loads. Special Publication 1977; SP-54: 145-168.
- [5] Yoggy GD. The History of Shotcrete. *American Shotcrete Association* 2000; **2**(4): 1-15.
- [6] Kompen R. Steel Fiber Reinforced Shotcrete—For Rock Support and Fire Protection. Shotcrete for Underground Support V; ASCE; June 3-7, 1990. p. 323-332.
- [7] ACI Committee 506. ACI 506R-16 Guide to Shotcrete. American Concrete Institute; 2016.
- [8] Khitab A. Shotcrete: Methods and Compositions. 2015.
- [9] Ramakrishnan V. Materials and Properties of Fibre-Reinforced Concrete. Civil Engineering 1988; 58(10): 56-59.
- [10] Mather R. The Structure of Polyolefin Fibres. In: Handbook of Textile Fibre Structure. Elsevier; 2009. p. 275-304.
- [11] Kahraman B. Determining Optimal Polypropylene Fiber Dosages in Sprayed Concrete for Mining and Civil Engineering Applications. Earth Sciences Research Journal 2015; 19(1): 65-71.
- [12] Shah SA, Mian Asfahan A, Muhammad N, Zeeshan K, Muhammad R. Effects of Fiber Reinforcements on the Strength of Shotcrete. Civil Engineering and Architecture 2021; 9(1): 299-307.
- [13] Ochi T, Okubo S, Fukui K. Development of Recycled PET Fiber and Its Application as Concrete-Reinforcing Fiber. Cement and Concrete Composites 2007; 29(6): 448-455.
- [14] Cui X, et al. Effects of PET Fibers on Pumpability, Shootability, and Mechanical Properties of Wet-Mix Shotcrete. Advances in Civil Engineering 2019; 2019: 2756489.
- [15] Jawheer AA, Al-Hadithi AI, Mansoor YA.
 Fuzzy Logic Program to Predict of
 Mechanical Properties for Shotcrete
 Concrete Containing Waste Plastic.
 2021 14th International Conference on

- Developments in eSystems Engineering (DeSE); IEEE; 2021.
- [16] Hussein SN, Mohammed **Mechanical Properties of Concrete** Reinforced with Hybrid Polypropylene-PET Waste Fibers. Sulaimania Journal for Engineering Sciences 2021; 8(1): 56-68.
- [17] Iraqi Specification No. 5. Portland Organization Cement. Central Standardization & Quality Control (COSQC), Baghdad, Iraq; 2019.
- [18] Iraqi Specification No. 45. Aggregates from Natural Sources for Concrete and Building Construction. Central Organization for Standardization and Quality Control, Baghdad, Iraq; 1984.
- [19] ASTM A615/A615M. Standard Specification for Deformed and Plain **Carbon-Steel** Bars for Reinforcement. **ASTM** Concrete International, West Conshohocken, PA; 2009.
- [20] Enad AM, Al-Hadithi AI, Mansoor YA. Flow **Ability** and Mechanical **Properties of Shotcrete Concrete** Incorporated with Waste Plastic Fibers. Iragi Journal of Civil Engineering 2022; 15(2): 8-15.
- [21] ACI Committee 506. ACI PRC-506-16 Guide to Shotcrete. American Concrete Institute; 2016.
- [22] ASTM C1611/C1611M. Standard Test Method for Slump Flow of Self-**Consolidating** Concrete. ASTM International, West Conshohocken, PA; 2018.
- [23] ASTM C1604/C1604M. Standard Test Method for Obtaining and Testing Drilled Cores of Shotcrete. ASTM International, West Conshohocken, PA; 2005.
- [24] ASTM C78. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, West Conshohocken, PA; 2015.
- [25] ASTM C1609/C1609M. Standard Test **Method for Flexural Performance of** Fiber-Reinforced Concrete. ASTM International, West Conshohocken, PA; 2019.
- [26] ASTM C78. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-

- Point Loading). ASTM International, West Conshohocken, PA; 2015.
- [27] Jawheer AA, Al-Hadithi AI, Mansoor YA. An Experimental Investigation of Mechanical Properties of Wet-Mixed Shotcrete Reinforced with Different Types of Plastic Fiber. AIP Conference Proceedings 2024; **2980**(1): 020001.
- [28] Yang S, Yue X, Liu X, Tong Y. Properties **Self-Compacting Lightweight** Containing Concrete Recycled Plastic Particles. Construction and Building Materials 2015; 84: 444-453.
- [29] Sunaga D, Namiki K, Kanakubo T. Crack Width **Evaluation** Fiberof **Reinforced Cementitious Composite Considering Interaction Between** Deformed Steel Rebar. Construction and Building Materials 2020; 261: 119968.
- [30]Khaloo AR, Afshari M. Flexural Behaviour of Small Steel Fibre Reinforced Concrete Slabs. Cement and Concrete Composites 2005; 27(1): 141-149.
- [31] Al-Jawari RS. Behavior of Reinforced **Concrete Structures and Reinforced Carbon Fiber Fibers Installed Near** the Surface. Master's Thesis, Mosul University, Iraq; 2010.
- [32] Jomaa'h MM, Ahmed S, Algburi HM. Flexural Behavior of Reinforced Concrete One-Way Slabs with Different Ratios of Lightweight Coarse Aggregate. Tikrit Journal of *Engineering Sciences* 2018; **25**(4): 37-45.
- [33] Jawheer AA, Al-Hadithi AI, Mansoor YA. **Investigate the Fresh and Hardened Properties of Shotcrete Concrete Contains Different Types of Plastic** Iragi Journal of Civil Engineering 2022; **16**(1): 22-30.
- [34] Fraternali F, Ciancia V, Chechile R, Rizzano G, Feo L, Incarnato L. **Experimental Study of the Thermo-**Mechanical Properties of Recycled PET Fiber-Reinforced Concrete. Composite Structures 2011; 93(9): 2368-2374.