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Abstract: The application of pultruded (GFRP) 

composite has become increasingly prominent in 

civil infrastructure projects. This study provides a 

comprehensive analysis of experimental and 

numerical studies conducted on the mechanical 

characteristics of (GFRP) composites across various 

temperature conditions, encompassing ambient and 

fire scenarios. The compilation comprises over 100 

scholarly articles that examine the mechanical 

behavior of (GFRP) materials, specifically 

emphasizing their tensile and compressive 

strengths, showed the mechanical properties of 

(GFRP) materials are commonly compromised 

when exposed to high temperatures that approach 

or surpass the resin's glass transition temperature 

(Tg). In contrast, temperatures that are lower than 

the glass transition temperature (Tg) have the 

potential to cause minimal degradation. This study 

provides that at temperatures exceeding 450°C, the 

tensile strength of (GFRP) bars experiences a 

significant decline, with a retention rate of less than 

20%. Similarly, GFRP laminates or sheets exhibit a 

substantial loss in strength, ranging from 68% to 

94%, when exposed to temperatures exceeding 

400°C. Also, the optimal model and the closest 

results to practical experiments in the case of 

compression are the models (Mahieux and wang). 

This review provides an in-depth understanding of 

the GFRP composite's behavior after being 

subjected to elevated temperatures. The results 

presented in this literature review could be used as 

a base for developing predictive models related to 

GFRP composite behavior after being subjected to 

elevated temperatures. 
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تأثير درجات الحرارة العالية على الخواص الميكانيكية لمقاطع البلاستيك المقوى بألياف  
 مراجعة  -الزجاج المبثوقة 

  عباس عبدالمجيد ذياب ،معتز إبراهيم علي
 . العراق  - بغداد / بغدادجامعة  /كلية الهندسة /دنيةمقسم الهندسة ال

 الخلاصة 
بالالياف الزجاجية ) أصبح  المقوى  المقولب  البوليمر  التحتية   (pultruded (GFRP)استخدام مركبات  البنية  بارزًا بشكل متزايد في مشاريع 

عبر ظروف   (GFRP) المدنية. تقدم هذه الدراسة تحليلاً شاملاً للدراسات التجريبية والعددية التي أجريت على الخصائص الميكانيكية لمركبات
مقالة علمية    100البيئة المحيطة وضرف الحريق. وذلك من خلال تسليط الضوء على أكثر من    ضروف درجات الحرارة المختلفة، بما في ذلك  

 (GFRP) ، مع التركيز بشكل خاص على قوة الشد والضغط، وأظهرت أن الخواص الميكانيكية لمواد(GFRP) تدرس السلوك الميكانيكي لمواد
وبينت الدراسة ان درجات    .Tgتعرضها لدرجات حرارة عالية تقترب أو تتجاوز درجة حرارة التزجيج للراتنج )الايبوكسي(  تتعرض للخطرعند

لديها القدرة على التسبب في الحد الأدنى من الانهيار. كما بينت الدراسة ان درجات حرارة الاعلى من    Tgالحرارة الأقل من درجة حرارة التزجج  
  GFRP٪. وبالمثل فإن شرائح أو صفائح  20انخفاضًا كبيرًا، مع معدل قوة متبقية أقل من   (GFRPدرجة مئوية، تواجه قوة الشد لقضبان )  450

درجة مئوية، كما أن النموذج الأمثل والأقرب    400عند تعرضها لدرجات حرارة تتجاوز    ٪94إلى    ٪68تظهر خسارة كبيرة في القوة تتراوح من  
(. توفر هذه المراجعة للبحوث فهمًا متعمقاً لسلوك مركبات  Mahieux and wangملية في حالة الضغط هو النموذج ) في النتائج للتجارب الع

GFRP    بعد تعرضها لدرجات حرارة مرتفعة حيث يمكن استخدام النتائج المقدمة في مراجعة البحوث كقاعدة لتطوير النماذج التنبؤية المتعلقة
 بعد تعرضها لدرجات حرارة مرتفعة.   GFRPبسلوك مركبات 

 . (؛ الخرسانة؛ العوارض الهجينة؛ العوارض المركبة؛ النموذج الرياضيGFRPالخرسانة المسلحة بألياف زجاجية ) كلمات الدالة:ال
 

1.INTRODUCTION
GFRP has been widely used in practice in the 
context of repair, rehabilitation, and 
upgradation of the R/C elements significantly 
calcium oxide (CaO), and GFRP has become a 
prefab option for structural needs [1-4]. 
Furthermore, GFRP has been successfully 
employed to restore and enhance the 
performance of pre-existing concrete 
structures, thereby extending their service life 
and structural integrity [5–7]. GFRP sheets and 
ropes have been frequently used to reinforce 
and retrofit pre-existing concrete structural 
elements that contain defects or damage [8-10]. 
Also, GFRP materials have viable issues 
regarding fire performance properties. GFRP 
materials significantly reduce their strength 
and stiffness properties when exposed to mildly 
elevated temperature [11-13], and such kind of 
thermal degradation of GFRP materials can be 
better classified into a few distinct stages as per 
previous research outcomes [14-17]. 

• The softening temperature (Ts) has no 
substantial alteration in mechanical 
properties [18, 19].  

• The glass transition temperature (Tg) 
rubbery state is typically noticed to be 
within the range of 65 to 120 °C, i.e., it 
does not uniformly establish a definitive 
differentiation between Tg and Tm [10, 
20]. 

• The critical temperature (Tc) is when the 
reinforcement material's strength 
decreases by 50% [21, 22], as shown in Fig. 
1. 

• The melting temperature (Tm): A 
temperature larger than Tc, reaching a 
residual value denoted as Presidual [21-23]. 

• Resin decomposition temperature (Td): 
When subjected to high temperatures 
ranging from 300 to 500 °C, degradation 
of their inherent structure, smoke, ash, 
and toxic volatile substances [24-27]. 

 
Fig. 1 The Temperature Vs. GFRP Mechanical Properties [21, 22]. 

https://tj-es.com/
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Determining the glass transition temperature 
(Tg) of the resin matrix can be achieved by 
utilizing either dynamic mechanical thermal 
analysis (DMTA) techniques or differential 
thermal analysis (DSC) [9, 28-32]. Recently, 
(GFRP) composites across configurations have 
been increasingly used, such as I-shaped 
profiles, channels, tubes, reinforcing bars, 
sheets, strips, grids, and tendons [33-40]. The 
behavior of (GFRP) materials demonstrates 
variations when subjected to direct exposure to 
open flames during fire incidents, in contrast to 
scenarios where GFRP is incorporated within 
concrete structures [23, 41]. This review's 
primary goal is to comprehensively analyze the 
behavior of (GFRP) composites under high 
temperatures. This analysis will be based on 
examining more than 100 experimental and 
theoretical studies. The primary aim is to 
furnish dependable and fundamental 
information for the discipline [42, 43]. This 
study investigates the mechanisms of damage 
and mechanical behavior of (GFRP) bars, 
laminates, and sheets under elevated 
temperatures. Also, suggestions for future 
activities are provided, and the conclusion is 
formulated [14, 44-46]. The voluminous data 
collection provides a comprehensive 
understanding of the subject and a solid basis 
for further investigation. 
2.DEGRADATION MECHANISM 
This section reviews studies on various GFRP 
thermal properties, including (Ts, Tg, Tc, and 
Td), and how they affect mechanical properties 
(tensile and compressive strength) [3, 4, 47-
52]. According to the literature, distinct failure 
processes will occur when laminates, bars, and 
pultruded GFRP are exposed to various high-
temperature ranges. The degradation 
mechanisms of all forms of GFRP under high 

temperatures can be categorized into four 
groups [53-55]: 

• At the softening temperature Ts (in this 
case, below the glass transition 
temperature Tg), the surface of the resin 
matrix will primarily keep its 
unconditioned sample characteristics. At 
these temperatures, some microcracks in 
the resin matrix will be visible [56, 57], 
Fig. 2.  

• The resin softens, revealing the positions 
of the fibers, and causes the individual 
fibers to fracture at the temperature near 
the resin Tg (above Ts and below Tm) [58]. 
This fracture will affect the resin matrix, 
lessen the tensile of GFRP, and result in 
the loss of some epoxy, Fig. 3.  

• The plane of the resin matrix nearly grows 
smooth when exposed to the melting 
temperature Tm (above Tg and below Td). 
Fibers are more noticeable since the resin 
softens (major fiber/resin debonding). 
The mechanical properties will decrease to 
a residual value of less than 50% of the 
maximal force) as the temperature rises 
until it reaches the resin decomposition 
temperature (Td) [59].  

• When resin decomposition temperature 
Td is achieved, the resin matrix encasing 
the fibers will almost entirely disintegrate, 
exposing the fiber clearly (the fiber/resin 
debonding) and significantly reducing the 
tensile properties of GFRP. Much resin 
will not be left because it has achieved its 
self-ignition temperature [60-62]. It is 
crucial to remember that these extreme 
temperature ranges have an insignificant 
impact on fiber characteristics, Fig. 4. 

  
Fig. 2 The GFRP Laminates After Exposure to Ts Temperature and Images of the SEM Test. 

https://tj-es.com/
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Fig. 3 The GFRP Laminates at Exposure to Tg Temperature and Images of the SEM Test. 

  
Fig. 4 The GFRP Laminates After Exposure to Td Temperature and Images of the SEM Test. 

 
3.MECHANICAL PROPERTIES 
3.1.Tensile Strength 
Many studies have investigated the mechanical 
tensile properties of various kinds of (GFRP) 
materials at high temperatures. A quantity of 
(GFRP) materials is investigated numerically 
and experimentally by employing a large 
number of adverse materials, carbon and glass 
fibers, and various thicknesses of 
laminate/sheet, resins and orientations, and 
high temperatures illustrated in previous 
studies [63-66]. Regression models are 
proposed by researchers to forecast the 
mechanical properties of (GFRP) materials at 
high temperatures using test results [35, 67, 
68]. Table 1 illustrates a comparative 
examination of the steady-state results of 

different studies. The analysis primarily centers 
on the critical temperature (Tc), i.e., the 
temperature at which a 50% decrease in 
strength is observed. Additionally, Table 1. 
highlights the corresponding retention of 
elastic modulus at the critical temperature and 
the mechanical characteristics demonstrated at 
excessive temperatures, precisely the highest 
temperature employed in every study. 
Moreover, the relationship between the tensile 
strength of Glass Fibre fiber-reinforced 
polymer bars and GFRP laminates with the 
critical temperature (Tc) is depicted in Fig. 5. 
Furthermore, Fig. 6 provides a comprehensive 
depiction of the different magnitudes of tensile 
strength observed in the studies being 
examined, specifically concerning Tc.  

https://tj-es.com/
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Fig. 5 GFRP (Bars and Laminates/ Pultruded) Loses Tensile Strength Vs. Tc, Given in the Literature. 

Table 1 Tensile Characteristics of All Kinds of GFRP (Bars, Laminates, and Pultruded) Placed at High 
Temperatures. 
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[69] pultruded Unidirectional Polyester 200×20×4 --- 200 53 --- ---- --- ---- ---- --- --- 
[70] pultruded Unidirectional Polyester 200×20×8 ---- 220 47 --- --- --- --- ---- --- --- 
[71] pultruded Unidirectional Polyester 200×25×8 --- 120 50 --- --- --- ---- 220 80 --- 
[72] Bar Unidirectional Vinyl ester D. 10 -- 250 40 --- 350 --- 60 400 60 --- 

PPS D. 10 -- 250 40 --- 350 --- 0 % --- --- --- 
[73] Bar Unidirectional Epoxy D. 10 --- --- --- --- 450 65 --- --- --- --- 
[69, 
74] 

Bar Unidirectional Polyester D. 9.5 --- 325 50 10 ---- --- --- 500 84 --- 

[75] Bar Unidirectional Vinyl ester 12.7 113 315 53 --- --- --- --- ---- --- --- 
[76] Bar Unidirectional Polyester D. 10 --- 325 45 21 --- --- ---- 375 91 48 
[77] Bar Unidirectional Vinyl ester D. 17 ---- --- --- --- --- --- --- 400 17 18 
[78] Bar Unidirectional Vinyl ester D. 16 110 300 51 25 157 41 ---- 518 78 25 

193 47 ---- 
327 53 ---- 
425 65 ---- 

[79] Bar Unidirectional Vinyl ester D. 12 --- 300 41 0 100 9 ---- ---- --- --- 
[41] Bar Unidirectional Vinyl ester D. 8 ---- 325 45 43 250 27 28 500 67 --- 
[63] Bar Unidirectional Epoxy D. 4 110 300 50 --- --- --- ---- 450 71 --- 

D. 10 110 450 50 --- --- --- ---- 450 50 --- 
[80] Bar Unidirectional Epoxy D. 10 95 300 43 --- ---- --- ---- ---- --- --- 
[81] Bar Unidirectional Epoxy D. 9 --- 375 50 25 --- --- --- 500 90 93 
[82] laminate Unidirectional Epoxy 600×20×2 70 300 44 --- --- --- --- 550 82 --- 

Woven Epoxy 600×20×2 70 300 49 --- --- --- --- 400 92 --- 
Chopped strand mat Epoxy 600×20×2 70 80 50 --- --- --- --- 250 87 --- 

[5] laminate Unidirectional Epoxy 300×20×2 70 300 55 18 300 55 18 ----- --- --- 
Woven Epoxy 300×20×2 70 200 45 13 300 65 32 ---- --- --- 
Chopped strand mat Epoxy 300×20×2 70 120 50 11 300 94 76 ---- --- --- 

[83] laminate Woven Epoxy 300×30 60 400 50 --- --- --- ---- 600 87 --- 
[84] laminate Unidirectional Polypro 

pylene 
300×15×12 ---- 150 50 --- --- --- ---- 300 75 --- 

[85] laminate Unidirectional Epoxy 250×40×0.35 ---- 300 43 30 ---- --- ---- ---- --- --- 
[86] laminate Unidirectional Epoxy 250×40×1.3 78 350 50 --- --- --- --- 400 80 --- 
[87] laminate Unidirectional Epoxy 600×25×2.5 100 250 48 --- ---- --- ---- 500 83 --- 
[58] laminate Unidirectional Epoxy 250×15×1.27 167 200 43 20 ---- ---- ---- ---- --- --- 
[69] laminate Unidirectional Polyester 200×20×4 ---- 200 53 --- ---- ---- ---- ---- --- --- 
[21] laminate Unidirectional Epoxy 735×38×2.6 75 75 52 23 200 54 19 ---- --- ---- 
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Moreover, it is feasible to derive the subsequent 
inferences from the data provided in Table 1, 
Fig. 5, and Fig. 6.  

• The data obtained from laminates 
subjected to elevated temperatures exhibit 
a higher degree of dispersion than GFRP 
bars, which can be attributed to the use of 
distinct fabrication techniques in 
constructing GFRP sheets and laminates. 

• Irrespective of the specific composition of 
the materials, the critical temperature (Tc) 
typically falls within the range of 300 to 
325 degrees Celsius for (GFRP) bars and 
between 200 to 300 degrees Celsius for 
GFRP laminates. 

• The thermal conductivity (Tc) of the 
laminates is far less than that of the 
(GFRP) bars due to the higher 
(fiber/resin) ratio present in the bars in 
comparison to the laminates. 

• At temperatures exceeding 450°C, the 
tensile strength of (GFRP) bars 
experiences a significant decline, with a 
retention rate of less than 20%. Similarly, 
GFRP laminates or sheets exhibit a 
substantial loss in strength, ranging from 
68% to 94%, when exposed to 
temperatures exceeding 400°C. 

• At temperatures below 450°C, (GFRP) 
exhibits a certain degree of load-bearing 
capacity. 

• Elevated temperatures have a 
considerably lower impact on the tensile 
elastic modulus than tensile strength. 

3.2.Tensile Strength Predicting Models 
The tensile properties of (GFRP) composites 
are important when designing high-
temperature composite structures [85, 88-90]. 
Based on actual test data, many researchers 
have developed theoretical models to predict 

the material's tensile properties at high 
temperatures. Some researchers believe that 
temperature alone controls GFRP composites' 
tensile properties [91]. Several researchers 
modeled experimental results [82, 92-94]. 
Composite thickness and radiation time were 
also examined by several researchers [5, 82, 
95]. Researchers suggest numerical models in 
Table 2. To conduct a comparative analysis of 
the identified models, Fig. 7 displays the 
predicted outcomes of several models about the 
tensile behavior of composites containing 
continuous fibers when exposed to high 
temperatures reaching upwards of 300 C. As 
expected, multiple trends are observed due to 
various parameters, such as test protocols, fiber 
kind, cross-section configuration, and material 
property [30]. However, it can be generally 
inferred that the influence of increased 
temperatures on the elastic modulus of (FRP) 
composites is relatively less significant when 
compared to its impact on tensile strength. 
3.3.Compressive Strength 
GFRP profiles exhibit greater susceptibility to 
compression than tension when exposed to 
higher temperatures. Furthermore, empirical 
evidence demonstrates that when subjecting 
the lower flange of the profiles to elevated 
temperatures exceeding the resin's (Td), 
maintaining this condition for an extended 
duration, the profile exhibits exceptional 
resistance to tensile failure [64, 96, 97]. Failure 
is more likely to occur at lower temperatures 
when subjected to compression force. This 
failure predominantly manifests on the web, 
where the load is applied at the top flange at the 
midpoint of the structure [98]. The research 
has also examined the compressive 
characteristics of (GFRP) laminates under 
elevated temperatures [95, 99-101]. 

  
(a) Tensile Strength. (b) Tensile Elastic Modulus. 

Fig. 7 Temperature Compared with Predicting Model Retention. 

Table 4 presents a comparative analysis of the 
steady-state compression and compressive 
elastic modulus test outcomes obtained from 
pultruded GFRP profiles and GFRP laminates 

at Tc and compressive strength at high 
temperatures. The compressive strength versus 
Tc data for the Pultrude GFRP profile, as given 
in the literature, are depicted in Fig. 8.  

https://tj-es.com/
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Table 2 Details of Mathematical Models for Predicting the Tensile Properties of All Types of GFRP 
After Exposure to High Temperatures. 
Study Dependent Independent Model Sample 

Define 
Sample 

Value 
Sample 

Eq. 

[91] Tensile Strength Temperature 

𝑃(𝑇) =
𝑃𝑢+𝑃𝑅

2
−

𝑃𝑢−𝑃𝑅

2
erf⁡(𝑘(𝑇 − 𝑇′))  

𝑃(𝑇) specific property % 

Eq. (1) 𝑃𝑢 Unrelaxed property at low Temp. kN 

𝑃𝑅 Relaxed property at high Temp. kN 

𝑃(𝑇) =
𝑃𝑢+𝑃𝑅

2
−

𝑃𝑢−𝑃𝑅

2
tanh⁡(𝑘(𝑇 − 𝑇′))  

𝑘 distribution constant ---- 

Eq. (2) 𝑇 Target value C 

𝑇′ Tg C 

[94] 

Tensile Strength 

Temperature 

𝑅(𝑇) = 0.56 − 0.44tanh⁡(0.0052(𝑇 − 305))  
𝑅(𝑇) specific property tensile % 

Eq. (3) 
𝑅(𝐸) specific property modulus % 

Elastic Modulus 𝑅(𝐸) = 0.51 − 0.49tanh⁡(0.0035(𝑇 − 340)) 
𝑇 Target value C 

Eq. (4) 
---- ----- --- 

[93] 

Tensile Strength Temperature 𝑅(𝑇) = 1 − 0.0025𝑇⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑇 ≤ 400∘C 𝑅(𝑇) specific property tensile % Eq. (5) 

Elastic Modulus Temperature 𝑅(𝐸) = {
1 ⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑇 ≤ 100∘C

1.25 − 0.0025𝑇 ⁡⁡⁡⁡100∘C ≤ 𝑇 ≤ 300∘C
2 − 0.005𝑇 ⁡⁡⁡⁡⁡⁡300∘C ≤ 𝑇 ≤ 400∘C

  
𝑅(𝐸) specific property modulus % 

Eq. (6) 
𝑇 Target value C 

[92] 

Tensile Strength Temperature 𝑅(𝑇) = 0.795 − 0.205tan⁡ ℎ(0.075(𝑇 − 190.58))  
𝑅(𝑇) specific property tensile % 

Eq. (7) 
𝑅(𝐸) specific property modulus % 

Elastic Modulus Temperature 𝑅(𝐸) = 0.86 − 0.140tanh⁡(0.035(𝑇 − 163.24))  
𝑇 Target value C 

Eq. (8) 
---- ----- --- 

[82] Tensile Strength 

Temperature 𝑅(𝑇) =

{
1    24∘C ≤ 𝑇 ≤ 45∘C

𝑎 (
1

𝑇3
) + 𝑏((log⁡(𝑡))0.333) + 𝑐  45∘C ≤ 𝑇 ≤ 500∘C

   

𝑅(𝑇) specific property tensile % 

Eq. (9) 

𝑡 Thickness of the laminate mm 

𝑇 Target value K 

Thicknesses 

a Constant Table 3 

b Constant Table 3 

c Constant Table 3 

[5] 

Tensile Strength 

Temperature 
𝑅(𝑇) = 𝑎 (

1

𝑇3
) + 𝑏 (

1

(log(
𝑡1
6
))

0.5) − 𝑐 (
1

(log(𝑡2))
0.5
) + 𝑑

  

𝑅(𝑇) specific property tensile % 

Eq. (10) 

𝑅(𝐸) specific property modulus % 

𝑇 Target value C 

Thicknesses 

𝑡2 Thickness of the laminate mm 

𝑡1 exposure time min 

Elastic Modulus 
𝑅(𝐸) = −𝑎(𝑇)4 + 𝑏(

1

(log (
𝑡1
6))

0.5)− 𝑐 (
1

(log(𝑡2))0.5
)

+ 𝑑 

𝑎 Constant Table 3 

Eq. (11) 
Time 

𝑏 Constant Table 3 
𝑐 Constant Table 3 

𝑑 Constant Table 3 

Table 3 The Constant Value for Mathematical Models is Mentioned in Table 2 Studies. 
Study [82] 
Direction fiber Temperature A b c 

 
Unidirectional 

>45, <250 9.365 ×106 0.158 0.526 
>250 9.591×107 0.198 -0.136 

Woven 
>45, <250 1.238 ×107 0.182 0.408 
>250 1.281× 108 0.137 -0.354 

Random >45, <300 3.049×107 0.115 -0.250 
Study [5] 
Direction fiber Temperature a b c d 

Unidirectional 
Eq. (10) 1.395×107 0.116 0.039 0.454 
Eq. (11) 1.964×10-12 0.028 0.024 1.025 

Woven 
Eq. (10) 1.609×107 0.138 0.029 0.281 
Eq. (11) 3.624×10-12 0.050 0.064 1.076 

Random 
Eq. (10) 2.077×107 0.128 0.257 0.455 
Eq. (11) 7.636×10-12 0.083 0.071 1.082 

 
Fig. 8 All Types of GFRP Losses and Compressive Strength Versus Tc are Given in the Literature.
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Based on the findings presented in Table 4 and 
Fig. 8, it is possible to draw the following 
conclusions: 

• The GFRP profiles and GFRP laminates 
for compressive strength reach the Tc 
significantly earlier than tensile properties 
(60-140 °C). 

• The strength of GFRP (laminates and 
pultruded profile), when exposed to 
higher temperatures, materials exhibit a 
significantly higher failure rate in 
compression than in tension. 

• Near reaching Td, the GFRP almost loses 
all of its compressive and reduces 
compressive strength between 2% and 
67% at temperatures less than Td. 

• The compressive elastic modulus exhibits 
a lower susceptibility to temperature 
elevation than the compressive strength, 
as observed in other mechanical 
properties. 

3.4.Compressive Strength Predicting 
Models 
In previous studies, different models were 
proposed to simulate/predict the compressive 
characteristics of (GFRP) materials under high-
temperature conditions. The models under 
consideration consist of two main types: (i) 

empirical mathematical formulations that 
involve curve-fitting techniques applied to the 
experimental data [70, 84, 100, 102, 103] and 
(ii) semi-empirical approaches [26, 70]. The 
accuracy of these models in describing the 
temperature-induced changes in the 
compressive behavior of pultruded GFRP 
material has been assessed. Table 5 shows some 
numerical models proposed by the researchers. 
To conduct a comparative analysis of the 
proposed models, Fig. 9 illustrates the 
anticipated outcomes generated by a selection 
of the models presented with the compressive 
behavior of composites featuring continuous 
fibers after exposure to high temperatures 
reaching up to 200 C. Various trends are 
observed as anticipated due to several 
parameters, including test protocols, fiber kind, 
material characteristics, and cross-section 
configuration. Also, the main conclusion is that 
all models are predicting and convergent except 
for the model of compressive suggested by Bai 
and Keller, named Rule of mixtures Eq. (16) 
gives an incompatibility compared to the 
remaining models [104], in contrast to the 
second model of the same researcher called 
Inverse Rule of mixtures Eq. (17) showed 
similar values to the rest of the proposed 
models. 

Table 4 Compressive Properties of All Types of GFRP (Laminates and Profile Pultruded) Exposed to 
High Temperatures. 

Study 
Type 

GFRP 
Type test 

Fibers 
Orientation 

Resin Type 
Specimen 

Dimensions (in 
mm) 

Tg (c) 
Tc  
(c) 

Strength 
losses at 

Tc 

Modulus 
losses at 

Tc 

Td  
(c) 

Strength 
losses at 

Td 

Modulus 
losses at 

Td 

[105] laminate Sheet Unidirectional Polyester 400×48×12 155 140 43 --- 180 60 --- 
[84] laminate Sheet Woven Polypropylene 125×105×12 ---- 80 50 --- 140 93 --- 
[106] laminate Sheet Woven Viny lester 100×100×9 120 100 55 --- 180 93 --- 

[107] Column Pultruded Unidirectional Polyester 

I-section (4.3 mm) 

95 90 

47 --- 400 98 --- 

C-section (5 mm) 47 --- 400 98 --- 

Box  (3 mm) 50 --- 400 95 --- 

Angle (6 mm) 53 --- 400 93 --- 

[108] Column Pultruded Unidirectional Polyester C-Sec.(500×5)mm --- 90 44 22 120 60 35 
[103] Column Pultruded Unidirectional Polyester C-Sec.(30×4)mm --- 75 53 --- 250 92 --- 
[109] Column Pultruded Unidirectional Polyester C-Sec.(400×5)mm --- 90 42 30 250 92 70 
[69] Column Pultruded Unidirectional Polyester Box (74×3)mm --- 88 47 --- 175 94 --- 
[70] Column Pultruded Unidirectional Polyester I-Sec.(50×6)mm 136 90 56 --- 250 95 --- 
[71] Column Pultruded Unidirectional Polyester Tube (300×3)mm 110 80 53 --- 220 90 --- 

Table 5 Details of Mathematical Models of Predicting the Compressive Properties of All Types of 
GFRP When Exposed to High Temperatures. 

Study Dependent Independent Model Sample 
Define 
Sample 

Value 
Sample 

Equation 

[91] 
Compressive 

Strength 
Temperature P(T) = Pu −

Pu − Pr
2

× (1 + tanh⁡[k′(T − Tg, mech )]) 

𝑃(𝑇) Specific property compressive % 

Eq. (12) 

𝑃𝑢 Property at low Temp. kN 

𝑃𝑟 The property after Tg. kN 

k′ Normal distribution fitting curve ---- 

𝑇 Target value C 

Tg, mech  Fitting Tg experimental data. C 

[102] 
Compressive 

Strength 
Temperature P(T) = Pr + (Pu − Pr) × exp⁡[−(T/T0)

m] 

Pu Property at low Temp. kN 

Eq. (13) 

Pr The property after Tg. kN 

T Target value K 

T0 Relaxation Temp. (fitted Exper.) K 

m Weibull exponent (fitted  Exper.) ----- 

[108] 
Compressive 

Strength 
Temperature P(T) = Pu × [A− (T − B)n/C] 

Pu Property at low Temp. kN 

Eq. (14) 
T Target value C 

𝑛 Parameters from a fitting curve Table 6 

𝐴, 𝐵, 𝐶 Parameters from a fitting curve Table 6 

[109] 
Compressive 

Strength 
Temperature P(T) = Pr + (Pu − Pr) × (1 − eB𝑒

C×T
) 

Pu Property at low Temp. kN 

Eq. (15) 
Pr The property after Tg. kN 

T Target value C 

Be, C Parameters from a fitting curve Table 6 

[105] 
Compressive 

Strength 
Temperature 

 

P(T) = Pg × [1 − 𝛼g(T)] + P1 × 𝛼g(T) × [1 − 𝛼d(T)]

+ Pd × 𝛼g(T) × 𝛼d(T) 

Pg Materials properties (glassy) kN 

Eq. (16) Pl Materials properties (leathery) kN 

Pd Materials Prop. (decomposed) kN 

1

P(T)
=
1 − 𝛼g(T)

Pg
+
𝛼g(T) × [1 − 𝛼d(T)]

P1
+
𝛼g(T) × 𝛼d(T)

Pd
 

T Target value C 
Eq. (17) 

𝛼g, 𝛼d (between 0 and 1) from TGA test ---- 
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Table 6 Constant Value for Mathematical Models Mentioned in Some Studies in Table 5. 
Study [108] Eq. (14) 
Temperature A B C n 
22<T<150 1.00 22 200 0.9 
150<T<420 0.59 150 490 0.7 
420<T<706 0.48 420 76,000 1.8 
Study [109] Eq. (15) 
Parameter B C 

 
Compressive -5.4468 -0.0328 
Shear -250.91 -0.05706 
Tensile -166.89 -0.0541 

 
Fig. 9 Temperature Compared with Predicting Models in Compressive Strength Retention. 

4.CONCLUSIONS  
This paper provides a comprehensive overview 
of the mechanical properties of 
GFRP composites, explicitly focusing on 
reinforced bars, laminates or sheets, and 
pultruded materials under high temperatures. 
Depending on the gets derived from the 
research, it is possible to draw the following 
primary observations: 

• During put to temperatures exceeding the 
(Tg), the resin matrix will undergo limited 
effects, potentially resulting in micro-
cracks. Furthermore, the outer layer of the 
resin matrix will maintain its rough 
texture, resembling the sample that has 
not undergone conditioning. In the 
present context, diminished strength or 
modified characteristics are absent in 
composites made of (GFRP). 

• After (GFRP) composites attain their (Tg) 
temperature, the resin transitions from a 
rigid, glassy state to a more flexible, 
rubbery state. In the present context, it is 
observed that (GFRP) materials exhibit a 
phenomenon of softening and creeping, 
leading to a substantial decrease in 
strength (tensile and compressive) and 
modulus properties. 

• The GFRP materials experience thermal 
degradation (Td), during which their 

organic matrix decomposes. The process 
of decomposition results in the release of 
heat, soot, smoke, and toxic volatile 
substances. Contact with a broad 
spectrum of high temperatures, mainly 
ranging (300 – 500) °C, reached the 
perturbation of chemical interactions, 
fragmentation of modular chains within 
the resin, and end of bonds between the 
fibers. The ignition and burning of the 
composite material occur at high 
temperatures. 

• Critical temperature (Tc) typically ranges 
from 300 to 330 °C for (GFRP) bars, 200 
to 300 °C for laminates subjected to 
tension, and 75 to 90 °C for pultruded 
GFRP profiles experiencing compression. 

• GFRP composites exhibit lower 
compressive strength and thermal 
resistance than their tensile strength and 
resistance when subjected to loading and 
exposure temperatures. 

• The impact of high temperatures on the 
elastic modulus of GFRP composites is 
less significant than the corresponding 
strength values. The primary reason for 
this phenomenon is the strong correlation 
between the (GFRP) composites (elastic 
modulus value) and the modulus of elastic 
fibers rather than the resin.  
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