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Abstract: The application of pultruded (GFRP)
composite has become increasingly prominent in
civil infrastructure projects. This study provides a
comprehensive analysis of experimental and
numerical studies conducted on the mechanical
characteristics of (GFRP) composites across various
temperature conditions, encompassing ambient and
fire scenarios. The compilation comprises over 100
scholarly articles that examine the mechanical
behavior of (GFRP) materials, specifically
emphasizing their tensile and compressive
strengths, showed the mechanical properties of
(GFRP) materials are commonly compromised
when exposed to high temperatures that approach
or surpass the resin's glass transition temperature
(Tg). In contrast, temperatures that are lower than
the glass transition temperature (Tg) have the
potential to cause minimal degradation. This study
provides that at temperatures exceeding 450°C, the
tensile strength of (GFRP) bars experiences a
significant decline, with a retention rate of less than
20%. Similarly, GFRP laminates or sheets exhibit a
substantial loss in strength, ranging from 68% to
94%, when exposed to temperatures exceeding
400°C. Also, the optimal model and the closest
results to practical experiments in the case of
compression are the models (Mahieux and wang).
This review provides an in-depth understanding of
the GFRP composite's behavior after being
subjected to elevated temperatures. The results
presented in this literature review could be used as
a base for developing predictive models related to
GFRP composite behavior after being subjected to
elevated temperatures.
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1.INTRODUCTION
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GFRP has been widely used in practice in the .

context of repair, rehabilitation, and
upgradation of the R/C elements significantly
calcium oxide (CaO), and GFRP has become a
prefab option for structural needs [1-4].
Furthermore, GFRP has been successfully
employed to restore and enhance the
performance of  pre-existing  concrete
structures, thereby extending their service life
and structural integrity [5—7]. GFRP sheets and
ropes have been frequently used to reinforce
and retrofit pre-existing concrete structural
elements that contain defects or damage [8-10].
Also, GFRP materials have viable issues
regarding fire performance properties. GFRP
materials significantly reduce their strength
and stiffness properties when exposed to mildly
elevated temperature [11-13], and such kind of
thermal degradation of GFRP materials can be
better classified into a few distinct stages as per
previous research outcomes [14-17].

The softening temperature (Ts) has no
substantial alteration in mechanical
properties [18, 19].

e The glass transition temperature (Tg)
rubbery state is typically noticed to be
within the range of 65 to 120 °C, i.e., it
does not uniformly establish a definitive
differentiation between Tg and Tm [10,

20].

e The critical temperature (Tc) is when the
reinforcement material's strength
decreases by 50% [21, 22], as shown in Fig.
1.

e The melting temperature (Tm): A

temperature larger than Tc, reaching a
residual value denoted as Presiqua [21-23].

e Resin decomposition temperature (Td):
When subjected to high temperatures
ranging from 300 to 500 °C, degradation
of their inherent structure, smoke, ash,
and toxic volatile substances [24-27].
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Fig. 1 The Temperature Vs. GFRP Mechanical Properties [21, 22].
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Determining the glass transition temperature
(Tg) of the resin matrix can be achieved by
utilizing either dynamic mechanical thermal
analysis (DMTA) techniques or differential
thermal analysis (DSC) [9, 28-32]. Recently,
(GFRP) composites across configurations have
been increasingly used, such as I-shaped
profiles, channels, tubes, reinforcing Dbars,
sheets, strips, grids, and tendons [33-40]. The
behavior of (GFRP) materials demonstrates
variations when subjected to direct exposure to
open flames during fire incidents, in contrast to
scenarios where GFRP is incorporated within
concrete structures [23, 41]. This review's
primary goal is to comprehensively analyze the
behavior of (GFRP) composites under high
temperatures. This analysis will be based on
examining more than 100 experimental and
theoretical studies. The primary aim is to
furnish  dependable and fundamental
information for the discipline [42, 43]. This
study investigates the mechanisms of damage
and mechanical behavior of (GFRP) bars,
laminates, and sheets under -elevated
temperatures. Also, suggestions for future
activities are provided, and the conclusion is
formulated [14, 44-46]. The voluminous data
collection  provides a  comprehensive
understanding of the subject and a solid basis
for further investigation.

2. DEGRADATION MECHANISM

This section reviews studies on various GFRP
thermal properties, including (Ts, Tg, Tc, and
Td), and how they affect mechanical properties
(tensile and compressive strength) [3, 4, 47-
52]. According to the literature, distinct failure
processes will occur when laminates, bars, and
pultruded GFRP are exposed to various high-
temperature  ranges. The  degradation
mechanisms of all forms of GFRP under high

o

e

.

Flg 2 The GFRP Laminates After Exposure to Ts Temperature and Images of the SEM Test.

temperatures can be categorized into four
groups [53-55]:

¢ At the softening temperature Ts (in this
case, below the glass transition
temperature Tg), the surface of the resin
matrix  will  primarily keep its
unconditioned sample characteristics. At
these temperatures, some microcracks in
the resin matrix will be visible [56, 571,
Fig. 2.

e The resin softens, revealing the positions
of the fibers, and causes the individual
fibers to fracture at the temperature near
the resin Tg (above Ts and below Tm) [58].
This fracture will affect the resin matrix,
lessen the tensile of GFRP, and result in
the loss of some epoxy, Fig. 3.

e The plane of the resin matrix nearly grows
smooth when exposed to the melting
temperature Tm (above Tg and below Ty).
Fibers are more noticeable since the resin
softens (major fiber/resin debonding).
The mechanical properties will decrease to
a residual value of less than 50% of the
maximal force) as the temperature rises
until it reaches the resin decomposition
temperature (Tq) [59].

e When resin decomposition temperature
Td is achieved, the resin matrix encasing
the fibers will almost entirely disintegrate,
exposing the fiber clearly (the fiber/resin
debonding) and significantly reducing the
tensile properties of GFRP. Much resin
will not be left because it has achieved its
self-ignition temperature [60-62]. It is
crucial to remember that these extreme
temperature ranges have an insignificant
impact on fiber characteristics, Fig. 4.
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3.MECHANICAL PROPERTIES
3.1.Tensile Strength

Many studies have investigated the mechanical
tensile properties of various kinds of (GFRP)
materials at high temperatures. A quantity of
(GFRP) materials is investigated numerically
and experimentally by employing a large
number of adverse materials, carbon and glass
fibers, and various  thicknesses of
laminate/sheet, resins and orientations, and
high temperatures illustrated in previous
studies [63-66]. Regression models are
proposed by researchers to forecast the
mechanical properties of (GFRP) materials at
high temperatures using test results [35, 67,
68]. Table 1 illustrates a comparative
examination of the steady-state results of

Fig. 4 The GFRP Laminates After Exposure to Td Temperatue Im.aes of the Sl\./I Test.

i ki

different studies. The analysis primarily centers
on the critical temperature (Tc), i.e., the
temperature at which a 50% decrease in
strength is observed. Additionally, Table 1.
highlights the corresponding retention of
elastic modulus at the critical temperature and
the mechanical characteristics demonstrated at
excessive temperatures, precisely the highest
temperature employed in every study.
Moreover, the relationship between the tensile
strength of Glass Fibre fiber-reinforced
polymer bars and GFRP laminates with the
critical temperature (Tc) is depicted in Fig. 5.
Furthermore, Fig. 6 provides a comprehensive
depiction of the different magnitudes of tensile
strength observed in the studies being
examined, specifically concerning Tc.
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Fig. 5 GFRP (Bars and Laminates/ Pultruded) Loses Tensile Strength Vs. Te, Given in the Literature.

Table 1 Tensile Characteristics of All Kinds of GFRP (Bars, Laminates, and Pultruded) Placed at High
Temperatures.

o - o g § £ 5 8 g 3
g 8 g £ 2 2 ] 2 @ 2 2
2z E $% E E%g 2 3 2o 2e B8 2% 2% 3 Sx Sg
3 £2 = S8E ¢ T g% 2% §. £f i TE gE
i 2 E£5 % §2E  » g B8 g% $§ BE 2T B BE 5%
o 1) 9 B 5] ] s g8 g« 5] L]
T S & n A £ ) g £ S 5§ 2
a = g o = a =
[60] pultruded Unidirectional Polyester 200x20x4 -—- 200 53 - —— e m—— e — e
[70] pultruded Unidirectional Polyester 200%x20x8  ---- 220 47 - - --- --- —— - -
[71]  pultruded Unidirectional Polyester 200x25x8 -—- 120 50 - - - --—- 220 80 -
[72] Bar Unidirectional Vinyl ester D. 10 - 250 40  --- 350 --- 60 400 60 -
PPS D.10 - 250 40 - 350 - o% - -—- -
[73] Bar Unidirectional Epoxy D.10 -—- - —— - 450 65 - -—- — -
[69, Bar Unidirectional Polyester D.9.5 --- 325 50 10 - - - 500 84 ---
741
[751 Bar Unidirectional Vinyl ester 12.7 113 315 53 - - - - - e e
[76] Bar Unidirectional Polyester D. 10 -—- 325 45 21 - - -~ 375 o1 48
[771 Bar Unidirectional Vinyl ester D. 17 - - —— - - - - 400 17 18
[78] Bar Unidirectional Vinyl ester D. 16 110 300 51 25 157 41 ---- 518 78 25
193 47 -
327 53 -
425 65 -
[70] Bar Unidirectional Vinyl ester D. 12 - 300 41 O 100 9 R
[41] Bar Unidirectional Vinyl ester D. 8 - 325 45 43 250 27 28 500 67 -
[63] Bar Unidirectional Epoxy D.4 110 300 50 - - - - 450 71 -
D. 10 110 450 50 @ --- - -—-- 450 50 ---
[80] Bar Unidirectional Epoxy D.10 95 300 43 - —— - ——— - - -
[81] Bar Unidirectional Epoxy D.g - 375 50 25 - --- --- 500 90 93
[82] laminate Unidirectional Epoxy 600x20%x2 70 300 44 - - - - 550 82 -
Woven Epoxy 600x20%2 70 300 49 - - - - 400 92 -
Chopped strand mat Epoxy 600x20%x2 70 80 50 - - --- --- 250 87 -
[5] laminate Unidirectional Epoxy 300X20%2 70 300 55 18 300 55 18 - —— -
Woven Epoxy 300x20x2 70 200 45 13 300 65 32 —-—— - -—-
Chopped strand mat Epoxy 300X20%2 70 120 50 11 300 94 76 - —— -
[83] laminate Woven Epoxy 300%x30 60 400 50 - - - ---- 600 87 --
[84] laminate Unidirectional Polypro 300x15%12  ---- 150 50  --- - - ---- 300 75 @ ---
pylene
[85] laminate Unidirectional Epoxy 250x40%0.35 ---- 300 43 30 — - e -
[86] laminate Unidirectional Epoxy 250%40%x1.3 78 350 50 - - - - 400 80 -
[87] laminate Unidirectional Epoxy 600%x25%2.5 100 250 48 - —— - ---—- 500 83 --
[58] laminate Unidirectional Epoxy 250%x15%1.27 167 200 43 20 e e e e - -
[69] laminate Unidirectional Polyester 200x20x4 - 200 53 - m—mmmme e e — e
[21] laminate Unidirectional Epoxy 735%x38%x2.6 75 75 52 23 200 54 19 - em -
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Moreover, it is feasible to derive the subsequent
inferences from the data provided in Table 1,
Fig. 5, and Fig. 6.

e The data obtained from laminates
subjected to elevated temperatures exhibit
a higher degree of dispersion than GFRP
bars, which can be attributed to the use of
distinct fabrication techniques in
constructing GFRP sheets and laminates.

e Irrespective of the specific composition of
the materials, the critical temperature (Tc)
typically falls within the range of 300 to
325 degrees Celsius for (GFRP) bars and
between 200 to 300 degrees Celsius for
GFRP laminates.

e The thermal conductivity (Tc) of the
laminates is far less than that of the
(GFRP) bars due to the higher
(fiber/resin) ratio present in the bars in
comparison to the laminates.

e At temperatures exceeding 450°C, the
tensile strength of (GFRP) Dbars
experiences a significant decline, with a
retention rate of less than 20%. Similarly,
GFRP laminates or sheets exhibit a
substantial loss in strength, ranging from
68% to 94%, when exposed to
temperatures exceeding 400°C.

e At temperatures below 450°C, (GFRP)
exhibits a certain degree of load-bearing
capacity.

e Elevated temperatures have a
considerably lower impact on the tensile
elastic modulus than tensile strength.

3.2.Tensile Strength Predicting Models

The tensile properties of (GFRP) composites
are important when designing high-
temperature composite structures [85, 88-90].
Based on actual test data, many researchers
have developed theoretical models to predict

1.1

1 ——Saafiet al.

=
=

=+-Jafari et al.

S 2 2 2 2
N

Tensile strength retention (%)
=
b

—8—Yu and Kodur

—X—Hawilel et al.

—Ashrafi et al

Elastic Modulus Retention (%)

0 50 100 150 200 250 300 350

Temperature (C)
(a) Tensile Strength.

the material's tensile properties at high
temperatures. Some researchers believe that
temperature alone controls GFRP composites'
tensile properties [91]. Several researchers
modeled experimental results [82, 92-94].
Composite thickness and radiation time were
also examined by several researchers [5, 82,
95]. Researchers suggest numerical models in
Table 2. To conduct a comparative analysis of
the identified models, Fig. 7 displays the
predicted outcomes of several models about the
tensile behavior of composites containing
continuous fibers when exposed to high
temperatures reaching upwards of 300 C. As
expected, multiple trends are observed due to
various parameters, such as test protocols, fiber
kind, cross-section configuration, and material
property [30]. However, it can be generally
inferred that the influence of increased
temperatures on the elastic modulus of (FRP)
composites is relatively less significant when
compared to its impact on tensile strength.
3.3.Compressive Strength

GFRP profiles exhibit greater susceptibility to
compression than tension when exposed to
higher temperatures. Furthermore, empirical
evidence demonstrates that when subjecting
the lower flange of the profiles to elevated
temperatures exceeding the resin's (Td),
maintaining this condition for an extended
duration, the profile exhibits exceptional
resistance to tensile failure [64, 96, 97]. Failure
is more likely to occur at lower temperatures
when subjected to compression force. This
failure predominantly manifests on the web,
where the load is applied at the top flange at the
midpoint of the structure [98]. The research
has also examined the compressive
characteristics of (GFRP) laminates under
elevated temperatures [95, 99-101].

-o-Yu and Kodur
—+Saafi et al.
X-Hawileh efal
—Ashrafi et al

[ 50 100 150 200 250 300 350
Temperatiire (C)

(b) Tensile Elastic Modulus.

Fig. 7 Temperature Compared with Predicting Model Retention.

Table 4 presents a comparative analysis of the
steady-state compression and compressive
elastic modulus test outcomes obtained from
pultruded GFRP profiles and GFRP laminates

at Tc and compressive strength at high
temperatures. The compressive strength versus
Tc data for the Pultrude GFRP profile, as given
in the literature, are depicted in Fig. 8.
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Table 2 Details of Mathematical Models for Predicting the Tensile Properties of All Types of GFRP
After Exposure to High Temperatures.

Study Depend Independent Model Sample P eﬂn‘e nValu? Eq.
P(T) specific property %
P(T) = P"zipﬁ - P";ipﬁerf (k(T = T7) P, Unrelaxed property at low Temp. kN Eq. (@)
. Pg Relaxed property at high Temp. kN
[91] Tensile Strength ~ Temperature P Tistribution constant —
P(T) = P"zipﬁ - P“;ipﬁtanh (k(T - T’)) T Target value C Eq. (2)
T’ Tg C
. _ _ _ R(T) specific property tensile %
(o] Tensile Strength Temperature R(T) = 0.56 — 0.44tanh (0.0052(T — 305)) R(E) specific property modulus % Eq. (3)
Elastic Modulus R(E) = 0.51 — 0.49tanh (0.0035(T — 340)) r Target value N Eq. (4)
Tensile Strength  Temperature R(T) =1-10.0025T 0 <T <400°C R(T) specific property tensile % Eq. (5)
lo3] 1 0<T<100°C R(E) specific property modulus %
Elastic Modulus ~ Temperature R(E) =41.25 - 0.0025T 100°C < T < 300°C T Target val c Eq. (6)
2-0.005T 300°C < T < 400°C arget value
. _ _ _ R(T) specific property tensile %
(o] Tensile Strength ~ Temperature R(T) = 0.795 — 0.205tan h(0.075(T — 190.58)) R(E) specific property modulus % Eq. (7)
Elastic Modulus ~ Temperature  R(E) = 0.86 — 0.140tanh (0.035(T — 163.24)) r Target value N Eq. (8)
R(T) specific property tensile %
Temperature R(T) = t Thickness of the laminate mm
. ° o T Target value K
[82] Tensile Strength — {1 . 24°C<sT<45C Eq. (9)
L) 4+ b((log (£))°333) + ¢ 45°C < T < 500°C a Constant Table 3
Thicknesses . (T'*) ((og (9)°*) +¢ b Constant Table 3
c Constant Table 3
R(T) specific property tensile %
Temperature _ (1 1 1 R(E) specific property modulus %
Tensile Strength R(M) =a (7‘) + <(,0g(r,:))" ‘) ¢ ((lng(tz))"s) d T Target value C Eq. (10)
B . .
t2 Thickness of the laminate mm
[5] Thicknesses tl exposure time min
1 L a Constant Table 3
- _ 4 _ b Constant Table 3
Elastic Modulus Time RE) = —aD' +b (1 og (5))° ¢ ((log(tz))"f') c Constant Tableg  Eq.(11)
3_ d d Constant Table 3
Table 3 The Constant Value for Mathematical Models is Mentioned in Table 2 Studies.
Study [82]
Direction fiber Temperature A b c
- >45, <250 .365 x10° 0.158 0.526
Unidirectional 45, <25 9-395 o >
>250 9.591x107 0.198 -0.136
>45, <250 1.238 x107 0.182 0.408
Woven 45, <25 3 4
>250 1.281x 108 0.137 -0.354
Random >45, <300 3.049x107 0.115 -0.250
Study [5]
Direction fiber Temperature a b c d
‘1 . Eq. (1 1.395%107 11 . .
Unidirectional q. (10) 395 O_ 0.116 0.039 0.454
Eq. (11) 1.964x1072 0.028 0.024 1.025
Woven Eq. (10) 1.609%x107 0.138 0.029 0.281
Eq. (11) 3.624x1072 0.050 0.064 1.076
Eq. (10 2.077x107 0.128 0.2 0.
Random g. (10) 77 57 455
Eq. (11) 7.636x10712 0.083 0.071 1.082
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Fig. 8 All Types of GFRP Losses and Compressive Strength Versus Tc are Given in the Literature.
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Based on the findings presented in Table 4 and
Fig. 8, it is possible to draw the following
conclusions:

e The GFRP profiles and GFRP laminates
for compressive strength reach the Tc
significantly earlier than tensile properties
(60-140 °C).

e The strength of GFRP (laminates and
pultruded profile), when exposed to
higher temperatures, materials exhibit a
significantly higher failure rate in
compression than in tension.

e Near reaching Td, the GFRP almost loses
all of its compressive and reduces
compressive strength between 2% and
67% at temperatures less than Ta.

e The compressive elastic modulus exhibits
a lower susceptibility to temperature
elevation than the compressive strength,
as observed in other mechanical
properties.

3.4.Compressive Strength Predicting
Models

In previous studies, different models were
proposed to simulate/predict the compressive
characteristics of (GFRP) materials under high-
temperature conditions. The models under
consideration consist of two main types: (i)

empirical mathematical formulations that
involve curve-fitting techniques applied to the
experimental data [70, 84, 100, 102, 103] and
(i) semi-empirical approaches [26, 70]. The
accuracy of these models in describing the
temperature-induced  changes in  the
compressive behavior of pultruded GFRP
material has been assessed. Table 5 shows some
numerical models proposed by the researchers.
To conduct a comparative analysis of the
proposed models, Fig. 9 illustrates the
anticipated outcomes generated by a selection
of the models presented with the compressive
behavior of composites featuring continuous
fibers after exposure to high temperatures
reaching up to 200 C. Various trends are
observed as anticipated due to several
parameters, including test protocols, fiber kind,
material characteristics, and cross-section
configuration. Also, the main conclusion is that
all models are predicting and convergent except
for the model of compressive suggested by Bai
and Keller, named Rule of mixtures Eq. (16)
gives an incompatibility compared to the
remaining models [104], in contrast to the
second model of the same researcher called
Inverse Rule of mixtures Eq. (17) showed
similar values to the rest of the proposed
models.

Table 4 Compressive Properties of All Types of GFRP (Laminates and Profile Pultruded) Exposed to

High Temperatures.
Type Fibers . . i . T Strength Modulus Strength Modulus
Study GFRP Type test Orientation Resin Type Dimensions (in  Tg (c¢) © lossTes at losses at © losses at losses at
c Tc Td Td
[105] laminate Sheet Unidirectional Polyester 155 140 43 - 180 60 -
[84] laminate Sheet Woven Polypropylene -—-- 8o 50 - 140 93 -
[106] laminate Sheet Woven Viny lester 120 100 55 - 180 93 -
I-section (4.3 mm) 47 - 400 98 -
[107] Column  Pultruded  Unidirectional Polyester C-section (5 mm) 95 90 47 B 400 98 B
50 400 95
Angle (6 mm) 53 e 400 93 -
[108] Column Pultruded Unidirectional Polyester C-Sec.(500x5)mm - 90 44 22 120 60 35
[103] Column Pultruded  Unidirectional Polyester C-Sec.(30x4)mm - 75 53 - 250 92 -
[109] Column Pultruded Unidirectional Polyester C-Sec.(400x5)mm - 90 42 30 250 92 70
[69] Column  Pultruded  Unidirectional Polyester Box (74x3)mm - 88 47 - 175 94 -
[70] Column Pultruded  Unidirectional Polyester I-Sec.(50x6)mm 136 90 56 - 250 95 -
[71] Column Pultruded Unidirectional Polyester Tube (300x3)mm 110 80 53 - 220 90 -

Table 5 Details of Mathematical Models of Predicting the Compressive Properties of All Types of

GFRP When Exposed to High Temperatures.

Study Dependent Independent Model Sample P eﬁn‘e aValu‘e Equation
P(T) Specific property compressive %
P, Property at low Temp. kN
mpressive P,— P B The property after Tg. kN
for] COStrpesz‘éstsh ¢ Temperature P =P~ 2 " (1 + tanh [k (T = Ty e )]) k' Normal diztrill))utti};n ﬁtting curve - Eq. (12)
T Target value C
Ty, mech Fitting Tg experimental data. C
P, Property at low Temp. kN
Compressive P. The property after Tg. kN
[102] Strength Temperature P(T) = P + (P, — B.) x exp [—(T/T)™] T Target value K Eq. (13)
To Relaxation Temp. (fitted Exper.) K
m Weibull exponent (fitted Exper.)  -----
P, Property at low Temp. kN
Compressive T Target value C
[108] Strzngth Temperature P(T) = P x [A = (T—B)"/C] n Parameters frgom a fitting curve Table 6 Eq. (14)
A,B,C Parameters from a fitting curve  Table 6
P, Property at low Temp. kN
[109] COSTr pel:;tsl;ve Temperature P(T) = P, + (P, — B) x (1 — e8¢ ") R The 1¥;pgeerttz;£t:r Te. ké\l Eq. (15)
Be, C Parameters from a fitting curve Table 6
A Materials properties (glassy) kN
. P(T) = P X [1 = ag(T)] + P X ag(T) X [1 — aq(T)] B Materials properties (leathery) kN Eq. (16)
[105] Cosr?r zrnests}llve Temperature + Py X ag(T) X ag(T) Py Materials Prop. (decomposed) kN
8 1 1—ag(T) | ag(MX[1—ag(D] | a(T) X aq(T) T Target value C .
P(T) P, + P, + P agaq  (between 0 and 1) from TGA test - q- 17)
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Table 6 Constant Value for Mathematical Models Mentioned in Some Studies in Table 5.

Study [108] Eq. (14)
Temperature A B C n
22<T<150 1.00 22 200 0.9
150<T<420 0.59 150 490 0.7
420<T<706 0.48 420 76,000 1.8
Study [109] Eq. (15)
Parameter B C
Compressive -5.4468 -0.0328
Shear -250.91 -0.05706
Tensile -166.89 -0.0541
1.1
—e—Gibson et al.
~ 1
= —b—Mahieux et al.
N
= 0.9 —X—Wang et al.
T ~#-Correia et al.
g 0.8 = Bai et al. (Rule)
=07 ++++ Bai ot al. (Inverse rule)
=
Z 06
=
0.5
B
=
~ 0.4
=
<
o3
<
Eo2 | T
=
“ 0.1
[
4] 40 80 120 160 200
Temperature (C)

Fig. 9 Temperature Compared with Predicting Models in Compressive Strength Retention.

4.CONCLUSIONS

This paper provides a comprehensive overview
of  the mechanical properties of
GFRP composites, explicitly focusing on
reinforced bars, laminates or sheets, and
pultruded materials under high temperatures.
Depending on the gets derived from the
research, it is possible to draw the following
primary observations:

e During put to temperatures exceeding the
(Tg), the resin matrix will undergo limited
effects, potentially resulting in micro-
cracks. Furthermore, the outer layer of the
resin matrix will maintain its rough
texture, resembling the sample that has
not undergone conditioning. In the
present context, diminished strength or
modified characteristics are absent in
composites made of (GFRP).

e After (GFRP) composites attain their (Tg)
temperature, the resin transitions from a
rigid, glassy state to a more flexible,
rubbery state. In the present context, it is
observed that (GFRP) materials exhibit a
phenomenon of softening and creeping,
leading to a substantial decrease in
strength (tensile and compressive) and
modulus properties.

e The GFRP materials experience thermal
degradation (Td), during which their

organic matrix decomposes. The process
of decomposition results in the release of
heat, soot, smoke, and toxic volatile
substances. Contact with a broad
spectrum of high temperatures, mainly
ranging (300 — 500) °C, reached the
perturbation of chemical interactions,
fragmentation of modular chains within
the resin, and end of bonds between the
fibers. The ignition and burning of the
composite material occur at high
temperatures.

Critical temperature (Tc) typically ranges
from 300 to 330 °C for (GFRP) bars, 200
to 300 °C for laminates subjected to
tension, and 75 to 90 °C for pultruded
GFRP profiles experiencing compression.
GFRP  composites  exhibit  lower
compressive  strength and thermal
resistance than their tensile strength and
resistance when subjected to loading and
exposure temperatures.

The impact of high temperatures on the
elastic modulus of GFRP composites is
less significant than the corresponding
strength values. The primary reason for
this phenomenon is the strong correlation
between the (GFRP) composites (elastic
modulus value) and the modulus of elastic
fibers rather than the resin.
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