



ISSN: 1813-162X (Print); 2312-7589 (Online)

## Tikrit Journal of Engineering Sciences

available online at: http://www.tj-es.com



# Influence of High Temperatures on the Mechanical Properties of GFRP Pultruded Sections- Review

Muataz I. Ali 👓 \*, Abbas A. Allawi 🕫

Civil Engineering Department, Engineering College, University of Baghdad, Baghdad, Iraq.

#### Keywords:

Glass fiber reinforced pultruded (GFRP); Concrete; Hybrid beams; Composite beam; Mathematical model.

#### Highlights:

- Section of (GFRP) can be used with high temperatures in a condition that the bonding water is protected from reaching the critical temperature (Tc).
- Mathematical and statistical models give results that are close to practical results.
- The loss ratio in tension and compression for sections (GFRP) is approximately equal.

#### ARTICLE INFO

#### Article history:

| Received                 | 11 Jan. | 2024 |
|--------------------------|---------|------|
| Received in revised form | 19 Jan. | 2024 |
| Accepted                 | 16 May  | 2024 |
| Final Proofreading       | 02 July | 2025 |
| Available online         | 28 Aug. | 2025 |

© THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY



Citation: Ali MI, Allawi AA. Influence of High Temperatures on the Mechanical Properties of GFRP Pultruded Sections- Review. *Tikrit Journal of Engineering Sciences* 2025; **32**(2): 1967.

http://doi.org/10.25130/tjes.32.2.39

\*Corresponding author:

### Muataz I. Ali

Mechanical Department, Engineering College, Tikrit University, Tikrit, Iraq.

**Abstract**: The application of pultruded (GFRP) composite has become increasingly prominent in civil infrastructure projects. This study provides a comprehensive analysis of experimental and numerical studies conducted on the mechanical characteristics of (GFRP) composites across various temperature conditions, encompassing ambient and fire scenarios. The compilation comprises over 100 scholarly articles that examine the mechanical behavior (GFRP) materials. specifically emphasizing their tensile and compressive strengths, showed the mechanical properties of (GFRP) materials are commonly compromised when exposed to high temperatures that approach or surpass the resin's glass transition temperature (Tg). In contrast, temperatures that are lower than the glass transition temperature (Tg) have the potential to cause minimal degradation. This study provides that at temperatures exceeding 450°C, the tensile strength of (GFRP) bars experiences a significant decline, with a retention rate of less than 20%. Similarly, GFRP laminates or sheets exhibit a substantial loss in strength, ranging from 68% to 94%, when exposed to temperatures exceeding 400°C. Also, the optimal model and the closest results to practical experiments in the case of compression are the models (Mahieux and wang). This review provides an in-depth understanding of the GFRP composite's behavior after being subjected to elevated temperatures. The results presented in this literature review could be used as a base for developing predictive models related to GFRP composite behavior after being subjected to elevated temperatures.

## تأثير درجات الحرارة العالية على الخواص الميكانيكية لمقاطع البلاستيك المقوى بألياف النجات الزجاج المبثوقة - مراجعة

معتز إبراهيم علي، عباس عبدالمجيد ذياب قسم الهندسة المدنية/ كلية الهندسة/ جامعة بغداد / بغداد - العراق.

لخلاصة

أصبح استخدام مركبات البوليمر المقولب المقوى بالالياف الزجاجية (pultruded (GFRP)) بارزًا بشكل متزايد في مشاريع البنية التحتية المدنية. تقدم هذه الدراسة تحليلاً شاملاً للدراسات التجريبية والعددية التي أجريت على الخصائص الميكانيكية لمركبات (GFRP) عبر ظروف درجات الحرارة المختلفة، بما في ذلك ضروف البيئة المحيطة وضرف الحريق. وذلك من خلال تسليط الضوء على أكثر من ١٠٠ مقالة علمية تدرس السلوك الميكانيكي لمواد (GFRP) ، مع التركيز بشكل خاص على قوة الشد والضغط، وأظهرت أن الخواص الميكانيكية لمواد (GFRP) نتعرض الخطر عند تعرضها لدرجات حرارة عالية تقترب أو تتجاوز درجة حرارة التزجيج للراتنج (الابيوكسي). Tg وبينت الدراسة أن درجات الحرارة الأقل من درجة حرارة الأقل من درجة حرارة التزجيج الموات حرارة الأعلى من الموات على الموات على الموات على الموات على الموات عبد الموات و من ١٠٨٪ إلى ١٩٤٤ الموات عبد تعرضها لدرجات حرارة تتجاوز ٢٠٠ درجة مئوية، كما أن النموذج الأمثل والأقرب في النتائج المتاب العملية في حالة الضغط هو النموذج (Mahieux and wang). توفر هذه المراجعة البحوث فهمًا متعمقًا لسلوك مركبات و GFRP بعد تعرضها لدرجات حرارة مرتفعة حيث يمكن استخدام النتائج المقدمة في مراجعة البحوث كقاعدة لتطوير النماذج التنبؤية المتعلقة بسلوك مركبات GFRP بعد تعرضها لدرجات حرارة مرتفعة.

الكلمات الدالة: الخرسانة المسلحة بألياف زجاجية (GFRP)؛ الخرسانة؛ العوارض الهجينة؛ العوارض المركبة؛ النموذج الرياضي.

#### 1.INTRODUCTION

GFRP has been widely used in practice in the of repair, rehabilitation, and upgradation of the R/C elements significantly calcium oxide (CaO), and GFRP has become a prefab option for structural needs [1-4]. Furthermore, GFRP has been successfully employed to restore and enhance the performance of pre-existing concrete structures, thereby extending their service life and structural integrity [5-7]. GFRP sheets and ropes have been frequently used to reinforce and retrofit pre-existing concrete structural elements that contain defects or damage [8-10]. Also, GFRP materials have viable issues regarding fire performance properties. GFRP materials significantly reduce their strength and stiffness properties when exposed to mildly elevated temperature [11-13], and such kind of thermal degradation of GFRP materials can be better classified into a few distinct stages as per previous research outcomes [14-17].

- The softening temperature (Ts) has no substantial alteration in mechanical properties [18, 19].
- The glass transition temperature (Tg) rubbery state is typically noticed to be within the range of 65 to 120 °C, i.e., it does not uniformly establish a definitive differentiation between Tg and Tm [10, 20].
- The critical temperature (Tc) is when the reinforcement material's strength decreases by 50% [21, 22], as shown in Fig.
   1.
- The melting temperature (Tm): A temperature larger than Tc, reaching a residual value denoted as P<sub>residual</sub> [21-23].
- Resin decomposition temperature (Td): When subjected to high temperatures ranging from 300 to 500 °C, degradation of their inherent structure, smoke, ash, and toxic volatile substances [24-27].

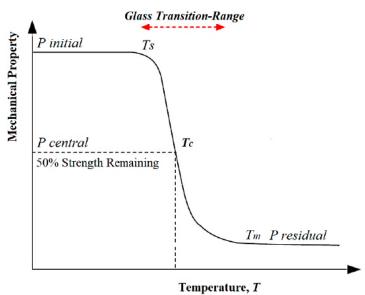



Fig. 1 The Temperature Vs. GFRP Mechanical Properties [21, 22].

Determining the glass transition temperature (Tg) of the resin matrix can be achieved by utilizing either dynamic mechanical thermal analysis (DMTA) techniques or differential thermal analysis (DSC) [9, 28-32]. Recently, (GFRP) composites across configurations have been increasingly used, such as I-shaped profiles, channels, tubes, reinforcing bars, sheets, strips, grids, and tendons [33-40]. The behavior of (GFRP) materials demonstrates variations when subjected to direct exposure to open flames during fire incidents, in contrast to scenarios where GFRP is incorporated within concrete structures [23, 41]. This review's primary goal is to comprehensively analyze the behavior of (GFRP) composites under high temperatures. This analysis will be based on examining more than 100 experimental and theoretical studies. The primary aim is to furnish dependable and fundamental information for the discipline [42, 43]. This study investigates the mechanisms of damage and mechanical behavior of (GFRP) bars. sheets under laminates. and elevated temperatures. Also, suggestions for future activities are provided, and the conclusion is formulated [14, 44-46]. The voluminous data collection provides a comprehensive understanding of the subject and a solid basis for further investigation.

#### 2.DEGRADATION MECHANISM

This section reviews studies on various GFRP thermal properties, including (Ts, Tg, Tc, and Td), and how they affect mechanical properties (tensile and compressive strength) [3, 4, 47-52]. According to the literature, distinct failure processes will occur when laminates, bars, and pultruded GFRP are exposed to various high-temperature ranges. The degradation mechanisms of all forms of GFRP under high

temperatures can be categorized into four groups [53-55]:

- At the softening temperature Ts (in this case, below the glass transition temperature Tg), the surface of the resin matrix will primarily keep its unconditioned sample characteristics. At these temperatures, some microcracks in the resin matrix will be visible [56, 57], Fig. 2.
- The resin softens, revealing the positions of the fibers, and causes the individual fibers to fracture at the temperature near the resin Tg (above Ts and below Tm) [58]. This fracture will affect the resin matrix, lessen the tensile of GFRP, and result in the loss of some epoxy, Fig. 3.
- The plane of the resin matrix nearly grows smooth when exposed to the melting temperature Tm (above Tg and below Td). Fibers are more noticeable since the resin softens (major fiber/resin debonding). The mechanical properties will decrease to a residual value of less than 50% of the maximal force) as the temperature rises until it reaches the resin decomposition temperature (Td) [59].
- When resin decomposition temperature Td is achieved, the resin matrix encasing the fibers will almost entirely disintegrate, exposing the fiber clearly (the fiber/resin debonding) and significantly reducing the tensile properties of GFRP. Much resin will not be left because it has achieved its self-ignition temperature [60-62]. It is crucial to remember that these extreme temperature ranges have an insignificant impact on fiber characteristics, Fig. 4.



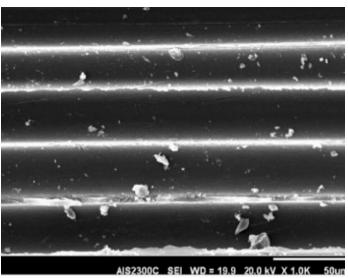



Fig. 2 The GFRP Laminates After Exposure to Ts Temperature and Images of the SEM Test.



Fig. 3 The GFRP Laminates at Exposure to Tg Temperature and Images of the SEM Test.

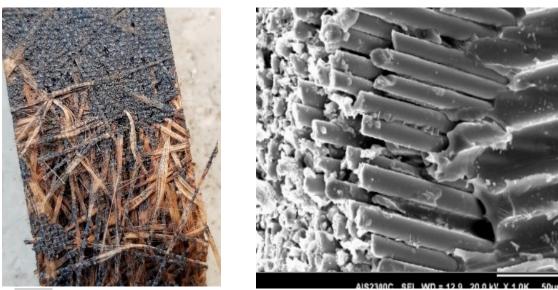



Fig. 4 The GFRP Laminates After Exposure to Td Temperature and Images of the SEM Test.

## 3.MECHANICAL PROPERTIES 3.1.Tensile Strength

Many studies have investigated the mechanical tensile properties of various kinds of (GFRP) materials at high temperatures. A quantity of (GFRP) materials is investigated numerically and experimentally by employing a large number of adverse materials, carbon and glass fibers. and various thicknesses laminate/sheet, resins and orientations, and high temperatures illustrated in previous studies [63-66]. Regression models are proposed by researchers to forecast the mechanical properties of (GFRP) materials at high temperatures using test results [35, 67, 68]. Table 1 illustrates a comparative examination of the steady-state results of

different studies. The analysis primarily centers on the critical temperature (Tc), i.e., the temperature at which a 50% decrease in strength is observed. Additionally, Table 1. highlights the corresponding retention of elastic modulus at the critical temperature and the mechanical characteristics demonstrated at excessive temperatures, precisely the highest temperature employed in every study. Moreover, the relationship between the tensile strength of Glass Fibre fiber-reinforced polymer bars and GFRP laminates with the critical temperature (Tc) is depicted in Fig. 5. Furthermore, Fig. 6 provides a comprehensive depiction of the different magnitudes of tensile strength observed in the studies being examined, specifically concerning Tc.

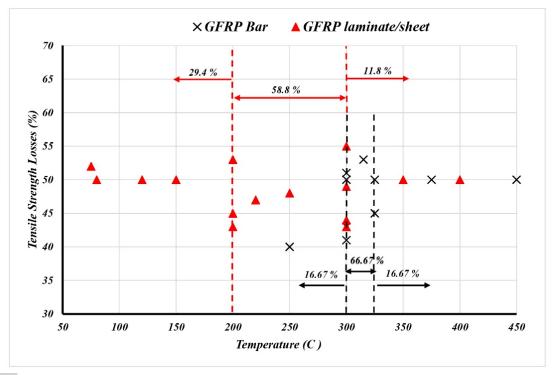
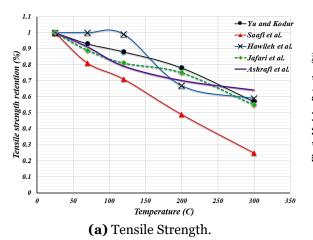


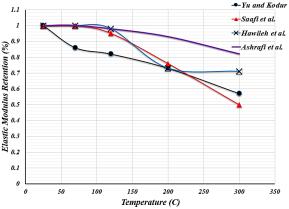

Fig. 5 GFRP (Bars and Laminates/ Pultruded) Loses Tensile Strength Vs. Tc, Given in the Literature.

**Table 1** Tensile Characteristics of All Kinds of GFRP (Bars, Laminates, and Pultruded) Placed at High Temperatures.

|            |            |                       |                |                                |          |            | S                        | Ø                       | T            | S                            | S                           |            | Ø                        | Ø                   |
|------------|------------|-----------------------|----------------|--------------------------------|----------|------------|--------------------------|-------------------------|--------------|------------------------------|-----------------------------|------------|--------------------------|---------------------|
|            | Type       | Fibres<br>Orientation | ре             | Specimen<br>Dimensions<br>(mm) |          |            | Strength losses<br>at Tc | Modulus losses<br>at Tc | es           | Strength losses<br>at T test | Modulus losses<br>at T test |            | Strength losses<br>at Td | sses                |
| Christ     |            | Fibres                | Resin Type     | Specimen<br>vimension<br>(mm)  | Тg (с)   | <u> </u>   | 55                       | ည္သ                     | টু ভূ        | ngth los<br>at T test        | lulus los<br>at T test      | ં          | 5 5                      | ılus le<br>at Td    |
| į          | GFRP       | ig ig                 | ij.            | ecimonension (mm)              | , po     | Tc         | igth le<br>at Tc         | ılus le<br>at Te        | pera<br>test | まって                          | Į L                         | Lq         | igth le<br>at Td         | E E                 |
| 9          | ' <u>E</u> | r i                   | Se s           | ğ ii )                         | _        | I          | e e                      | ਜੂ "                    | t p          | at e                         | at G                        | T          | e e                      | ۳<br>چ              |
|            | 9          | •                     | <u> </u>       | - A                            |          |            | Str                      | Mo                      | Ę.           | Str                          | Mo                          |            | Str                      | Modulus lo<br>at Td |
| <u>[69</u> | pultruded  | Unidirectional        | Polvester      | 200×20×4                       |          | 200        | 53                       |                         |              |                              |                             |            |                          |                     |
| 70         |            | Unidirectional        | Polyester      | 200×20×8                       |          | 220        | 47                       |                         |              |                              |                             |            |                          |                     |
| 71         | pultruded  | Unidirectional        | Polyester      | 200×25×8                       |          | 120        | 50                       |                         |              |                              |                             | 220        | 80                       |                     |
| 72         | Bar        | Unidirectional        | Vinyl ester    | D. 10                          |          | 250        | 40                       |                         | 350          |                              | 60                          | 400        | 60                       |                     |
|            |            |                       | PPS            | D. 10                          |          | 250        | 40                       |                         | 350          |                              | o %                         |            |                          |                     |
| [73        | Bar        | Unidirectional        | Epoxy          | D. 10                          |          |            |                          |                         | 450          | 65                           |                             |            |                          |                     |
| [69        | , Bar      | Unidirectional        | Polyester      | D. 9.5                         |          | 325        | 50                       | 10                      |              |                              |                             | 500        | 84                       |                     |
| 74]        |            |                       |                |                                |          |            |                          |                         |              |                              |                             |            |                          |                     |
| [75        |            | Unidirectional        | Vinyl ester    |                                | 113      | 315        | 53                       |                         |              |                              |                             |            |                          |                     |
| [76        |            | Unidirectional        | Polyester      | D. 10                          |          | 325        | 45                       | 21                      |              |                              |                             | 375        | 91                       | 48                  |
| [77        |            | Unidirectional        | Vinyl ester    |                                |          |            |                          |                         |              |                              |                             | 400        | 17                       | 18                  |
| [78        | ] Bar      | Unidirectional        | Vinyl ester    | D. 16                          | 110      | 300        | 51                       | 25                      | 157          | 41                           |                             | 518        | 78                       | 25                  |
|            |            |                       |                |                                |          |            |                          |                         | 193          | 47                           |                             |            |                          |                     |
|            |            |                       |                |                                |          |            |                          |                         | 327          | 53                           |                             |            |                          |                     |
| F .        | 1 D        | TT 111 .1 1           | *** 1 .        | ъ                              |          |            |                          |                         | 425          | 65                           |                             |            |                          |                     |
| [79        |            | Unidirectional        | Vinyl ester    |                                |          | 300        | 41                       | 0                       | 100          | 9                            |                             |            |                          |                     |
| [41        |            | Unidirectional        | Vinyl ester    |                                |          | 325        | 45                       | 43                      | 250          | 27                           | 28                          | 500        | 67                       |                     |
| [63        | ] Bar      | Unidirectional        | Epoxy          | D. 4<br>D. 10                  | 110      | 300        | 50                       |                         |              |                              |                             | 450        | 71                       |                     |
| [80        | l Bar      | Unidirectional        | Enour          | D. 10<br>D. 10                 | 110      | 450        | 50                       |                         |              |                              |                             | 450        | 50                       |                     |
| [81        |            | Unidirectional        | Epoxy<br>Epoxy | D. 10<br>D. 9                  | 95       | 300        | 43                       |                         |              |                              |                             |            |                          |                     |
| [82        |            | Unidirectional        | Epoxy          | D. 9<br>600×20×2               |          | 375<br>300 | 50                       | 25                      |              |                              |                             | 500<br>550 | 90<br>82                 | 93                  |
| [62        | Jammate    | Woven                 | Ероху          | 600×20×2                       | 70<br>70 | 300        | 44<br>49                 |                         |              |                              |                             | 400        | 92                       |                     |
|            |            | Chopped strand mat    | Epoxy          | 600×20×2                       | 70<br>70 | 80         | <del>49</del><br>50      |                         |              |                              |                             | 250        | 92<br>87                 |                     |
| [5]        | laminate   | Unidirectional        | Epoxy          | 300×20×2                       | 70<br>70 | 300        | 55                       | 18                      | 300          | 55                           | 18                          | 250        |                          |                     |
| [91        | lammate    | Woven                 | Epoxy          | 300×20×2                       | 70       | 200        | 45                       | 13                      | 300          | 65                           | 32                          |            |                          |                     |
|            |            | Chopped strand mat    | Epoxy          | 300×20×2                       | 70       | 120        | 50                       | 11                      | 300          | 94                           | 76                          |            |                          |                     |
| [83        | laminate   | Woven                 | Epoxy          | 300×30                         | 60       | 400        | 50                       |                         |              |                              |                             | 600        | 87                       |                     |
| [84        |            | Unidirectional        | Polypro        | 300×15×12                      |          | 150        | 50                       |                         |              |                              |                             | 300        | 75                       |                     |
| 201        |            |                       | pylene         | 0 0                            |          | 3-         | 0 -                      |                         |              |                              |                             | 0          | , 0                      |                     |
| [85        | laminate   | Unidirectional        | Epoxy          | 250×40×0.35                    |          | 300        | 43                       | 30                      |              |                              |                             |            |                          |                     |
| [86        |            | Unidirectional        | Epoxy          | 250×40×1.3                     | 78       | 350        | 50                       |                         |              |                              |                             | 400        | 80                       |                     |
| [87        |            | Unidirectional        | Epoxy          | 600×25×2.5                     | 100      | 250        | 48                       |                         |              |                              |                             | 500        | 83                       |                     |
| [58        | laminate   | Unidirectional        | Epoxy          | 250×15×1.27                    | 167      | 200        | 43                       | 20                      |              |                              |                             |            |                          |                     |
| [69        |            | Unidirectional        | Polyester      | 200×20×4                       |          | 200        | 53                       |                         |              |                              |                             |            |                          |                     |
| [21        | laminate   | Unidirectional        | Epoxy          | 735×38×2.6                     | 75       | 75         | 52                       | 23                      | 200          | 54                           | 19                          |            |                          |                     |

Moreover, it is feasible to derive the subsequent inferences from the data provided in Table 1, Fig. 5, and Fig. 6.


- The data obtained from laminates subjected to elevated temperatures exhibit a higher degree of dispersion than GFRP bars, which can be attributed to the use of distinct fabrication techniques constructing GFRP sheets and laminates.
- Irrespective of the specific composition of the materials, the critical temperature (Tc) typically falls within the range of 300 to 325 degrees Celsius for (GFRP) bars and between 200 to 300 degrees Celsius for GFRP laminates.
- The thermal conductivity (Tc) of the laminates is far less than that of the (GFRP) bars due to the higher (fiber/resin) ratio present in the bars in comparison to the laminates.
- At temperatures exceeding 450°C, the (GFRP) tensile strength of experiences a significant decline, with a retention rate of less than 20%. Similarly, GFRP laminates or sheets exhibit a substantial loss in strength, ranging from when exposed 68% to 94%, temperatures exceeding 400°C.
- At temperatures below 450°C, (GFRP) exhibits a certain degree of load-bearing capacity.
- Elevated temperatures have considerably lower impact on the tensile elastic modulus than tensile strength.


3.2.Tensile Strength Predicting Models The tensile properties of (GFRP) composites important when designing hightemperature composite structures [85, 88-90]. Based on actual test data, many researchers have developed theoretical models to predict

the material's tensile properties at high temperatures. Some researchers believe that temperature alone controls GFRP composites' tensile properties [91]. Several researchers modeled experimental results [82, 92-94]. Composite thickness and radiation time were also examined by several researchers [5, 82, 95]. Researchers suggest numerical models in Table 2. To conduct a comparative analysis of the identified models, Fig. 7 displays the predicted outcomes of several models about the tensile behavior of composites containing continuous fibers when exposed to high temperatures reaching upwards of 300 C. As expected, multiple trends are observed due to various parameters, such as test protocols, fiber kind, cross-section configuration, and material property [30]. However, it can be generally inferred that the influence of increased temperatures on the elastic modulus of (FRP) composites is relatively less significant when compared to its impact on tensile strength.

#### 3.3.Compressive Strength

GFRP profiles exhibit greater susceptibility to compression than tension when exposed to higher temperatures. Furthermore, empirical evidence demonstrates that when subjecting the lower flange of the profiles to elevated temperatures exceeding the resin's (Td), maintaining this condition for an extended duration, the profile exhibits exceptional resistance to tensile failure [64, 96, 97]. Failure is more likely to occur at lower temperatures when subjected to compression force. This failure predominantly manifests on the web, where the load is applied at the top flange at the midpoint of the structure [98]. The research has also examined the compressive characteristics of (GFRP) laminates under elevated temperatures [95, 99-101].





**(b)** Tensile Elastic Modulus.

Fig. 7 Temperature Compared with Predicting Model Retention.

Table 4 presents a comparative analysis of the steady-state compression and compressive elastic modulus test outcomes obtained from pultruded GFRP profiles and GFRP laminates

at Tc and compressive strength at high temperatures. The compressive strength versus Tc data for the Pultrude GFRP profile, as given in the literature, are depicted in Fig. 8.

**Table 2** Details of Mathematical Models for Predicting the Tensile Properties of All Types of GFRP After Exposure to High Temperatures.

| Study | Dependent        | Independent                   | Model                                                                                                                                                                                                 | Sample | Define<br>Sample                | Value<br>Sample | Eq.       |
|-------|------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|-----------------|-----------|
|       |                  |                               | 2.2                                                                                                                                                                                                   | P(T)   | specific property               | %               |           |
|       |                  |                               | $P(T) = \frac{P_u + P_R}{2} - \frac{P_u - P_R}{2} \operatorname{erf} \left( k(T - T') \right)$                                                                                                        | $P_u$  | Unrelaxed property at low Temp. | kN              | Eq. (1)   |
| [91]  | Tensile Strength | Temperature                   |                                                                                                                                                                                                       | $P_R$  | Relaxed property at high Temp.  | kN              |           |
| [91]  |                  | remperature                   | D.D. D.D.                                                                                                                                                                                             | k      | distribution constant           |                 |           |
|       |                  |                               | $P(T) = \frac{P_u + P_R}{2} - \frac{P_u - P_R}{2} \tanh \left( k(T - T') \right)$                                                                                                                     | T      | Target value                    | C               | Eq. (2)   |
|       |                  |                               |                                                                                                                                                                                                       | T'     | Tg                              | С               |           |
|       | Tensile Strength |                               | $R(T) = 0.56 - 0.44 \tanh (0.0052(T - 305))$                                                                                                                                                          | R(T)   | specific property tensile       | %               | Eq. (3)   |
| 94]   | Tensile strength | - Temperature                 | K(T) = 0.30 - 0.44 tallif (0.0032(T - 303))                                                                                                                                                           | R(E)   | specific property modulus       | %               | Eq. (3)   |
| .941  | Elastic Modulus  | remperature                   | $R(E) = 0.51 - 0.49 \tanh (0.0035(T - 340))$                                                                                                                                                          | T      | Target value                    | C               | Eq. (4)   |
|       |                  |                               | K(E) = 0.31 - 0.49 tallif (0.0033(1 - 340))                                                                                                                                                           |        |                                 |                 |           |
|       | Tensile Strength | Temperature                   | $R(T) = 1 - 0.0025T$ $0 \le T \le 400^{\circ}$ C                                                                                                                                                      | R(T)   | specific property tensile       | %               | Eq. (5)   |
| [93]  | m1 a. 1.1        | Temperature                   |                                                                                                                                                                                                       | R(E)   | specific property modulus       | %               |           |
|       | Elastic Modulus  |                               | $R(E) = \begin{cases} 1.25 - 0.0025T & 100^{\circ}\text{C} \le T \le 300^{\circ}\text{C} \\ 2 - 0.005T & 300^{\circ}\text{C} \le T \le 400^{\circ}\text{C} \end{cases}$                               | T      | Target value                    | C               | Eq. (6)   |
| [92]  | Tensile Strength | Temperature                   | $R(T) = 0.795 - 0.205 \tan h(0.075(T - 190.58))$                                                                                                                                                      | R(T)   | specific property tensile       | %               | Fo. (m)   |
|       | rensile Strength |                               | $R(T) = 0.795 - 0.205 \tan n(0.075(T - 190.58))$                                                                                                                                                      | R(E)   | specific property modulus       | %               | Eq. (7)   |
| [92]  | Elastic Modulus  | Temperature                   | $R(E) = 0.86 - 0.140 \tanh (0.035(T - 163.24))$                                                                                                                                                       | T      | Target value                    | С               | Eq. (8)   |
|       | Elastic Modulus  |                               | R(E) = 0.86 - 0.140 tallil (0.055(1 - 165.24))                                                                                                                                                        |        |                                 |                 | Eq. (6)   |
|       | Tensile Strength | Temperature ength Thicknesses |                                                                                                                                                                                                       | R(T)   | specific property tensile       | %               | – Eq. (9) |
|       |                  |                               | R(T) =                                                                                                                                                                                                | t      | Thickness of the laminate       | mm              |           |
| [82]  |                  |                               | $R(T) = \begin{cases} 1 & 24^{\circ}\text{C} \le T \le 45^{\circ}\text{C} \\ a\left(\frac{1}{T^{3}}\right) + b((\log(t))^{0.333}) + c & 45^{\circ}\text{C} \le T \le 500^{\circ}\text{C} \end{cases}$ | T      | Target value                    | K<br>Table 3    |           |
| .02]  |                  |                               | $a\left(\frac{1}{2}\right) + b((\log(t))^{0.333}) + c. 45^{\circ}C < T < 500^{\circ}C$                                                                                                                | a      | Constant                        | Table 3         |           |
|       |                  |                               | $\binom{u\binom{r^3}{T^3}+b((\log(t)))}{t^2+b(\log(t))}$                                                                                                                                              | b      | Constant                        | Table 3         |           |
|       |                  |                               |                                                                                                                                                                                                       | c      | Constant                        | Table 3         |           |
|       |                  |                               |                                                                                                                                                                                                       | R(T)   | specific property tensile       | %               |           |
|       |                  | Temperature                   | $R(T) = a\left(\frac{1}{T^3}\right) + b\left(\frac{1}{\left(\log(\frac{t_1}{2})\right)^{0.5}}\right) - c\left(\frac{1}{\left(\log(t_2)\right)^{0.5}}\right) + d$                                      | R(E)   | specific property modulus       | %               |           |
|       | Tensile Strength |                               | $K(T) = u\left(\frac{1}{T^3}\right) + b\left(\frac{1}{\left(\log(\frac{t_1}{T})\right)^{0.5}}\right) - c\left(\frac{1}{\left(\log(t_2)\right)^{0.5}}\right) + u$                                      | T      | Target value                    | C               | Eq. (10)  |
| [5]   |                  |                               | ( (6))                                                                                                                                                                                                | t2     | Thickness of the laminate       | mm              |           |
|       |                  | Thicknesses                   |                                                                                                                                                                                                       | t1     | exposure time                   | min             |           |
| .03   |                  |                               |                                                                                                                                                                                                       | а      | Constant                        | Table 3         |           |
|       |                  |                               | $R(E) = -a(T)^4 + b\left(\frac{1}{a}\right) - c\left(\frac{1}{a}\right)$                                                                                                                              | b      | Constant                        | Table 3         | Eq. (11)  |
|       | Elastic Modulus  | lus Time                      | $R(E) = -a(T)^4 + b \left( \frac{1}{\left( \log\left(\frac{t_1}{6}\right) \right)^{0.5}} \right) - c \left( \frac{1}{(\log(t_2))^{0.5}} \right)$                                                      | ) с    | Constant                        | Table 3         |           |
|       |                  |                               | ((log(6)) /<br>+ d                                                                                                                                                                                    |        | Constant                        | Table 3         |           |

Table 3 The Constant Value for Mathematical Models is Mentioned in Table 2 Studies.

| Study           |             |                         | [82]  |        |       |
|-----------------|-------------|-------------------------|-------|--------|-------|
| Direction fiber | Temperature | A                       | b     | С      |       |
| Unidirectional  | >45, <250   | 9.365 ×10 <sup>6</sup>  | 0.158 | 0.526  |       |
| Cilidirectional | >250        | 9.591×10 <sup>7</sup>   | 0.198 | -0.136 |       |
| Woven           | >45, <250   | $1.238 \times 10^{7}$   | 0.182 | 0.408  |       |
| woven           | >250        | $1.281 \times 10^{8}$   | 0.137 | -0.354 |       |
| Random          | >45, <300   | 3.049×10 <sup>7</sup>   | 0.115 | -0.250 |       |
| Study           | [5]         |                         |       |        |       |
| Direction fiber | Temperature | a                       | b     | c      | d     |
| Unidirectional  | Eq. (10)    | 1.395×10 <sup>7</sup>   | 0.116 | 0.039  | 0.454 |
| Cilidirectional | Eq. (11)    | 1.964×10 <sup>-12</sup> | 0.028 | 0.024  | 1.025 |
| Woven           | Eq. (10)    | 1.609×10 <sup>7</sup>   | 0.138 | 0.029  | 0.281 |
| WOVCII          | Eq. (11)    | $3.624 \times 10^{-12}$ | 0.050 | 0.064  | 1.076 |
| Random          | Eq. (10)    | $2.077 \times 10^{7}$   | 0.128 | 0.257  | 0.455 |
| Nandoni         | Eq. (11)    | 7.636×10 <sup>-12</sup> | 0.083 | 0.071  | 1.082 |

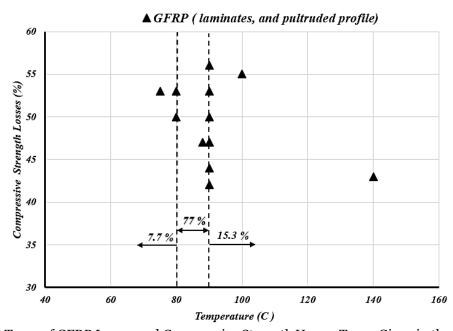



Fig. 8 All Types of GFRP Losses and Compressive Strength Versus Tc are Given in the Literature.

Based on the findings presented in Table 4 and Fig. 8, it is possible to draw the following conclusions:

- The GFRP profiles and GFRP laminates for compressive strength reach the Tc significantly earlier than tensile properties (60-140 °C).
- The strength of GFRP (laminates and pultruded profile), when exposed to higher temperatures, materials exhibit a significantly higher failure rate in compression than in tension.
- Near reaching Td, the GFRP almost loses all of its compressive and reduces compressive strength between 2% and 67% at temperatures less than  $T_d$ .
- The compressive elastic modulus exhibits a lower susceptibility to temperature elevation than the compressive strength, as observed in other mechanical properties.

## 3.4.Compressive Strength Predicting Models

In previous studies, different models were proposed to simulate/predict the compressive characteristics of (GFRP) materials under high-temperature conditions. The models under consideration consist of two main types: (i)

empirical mathematical formulations that involve curve-fitting techniques applied to the experimental data [70, 84, 100, 102, 103] and (ii) semi-empirical approaches [26, 70]. The accuracy of these models in describing the temperature-induced changes compressive behavior of pultruded GFRP material has been assessed. Table 5 shows some numerical models proposed by the researchers. To conduct a comparative analysis of the proposed models, Fig. 9 illustrates the anticipated outcomes generated by a selection of the models presented with the compressive behavior of composites featuring continuous fibers after exposure to high temperatures reaching up to 200 C. Various trends are observed as anticipated due to several parameters, including test protocols, fiber kind, material characteristics, and cross-section configuration. Also, the main conclusion is that all models are predicting and convergent except for the model of compressive suggested by Bai and Keller, named Rule of mixtures Eq. (16) gives an incompatibility compared to the remaining models [104], in contrast to the second model of the same researcher called Inverse Rule of mixtures Eq. (17) showed similar values to the rest of the proposed models.

**Table 4** Compressive Properties of All Types of GFRP (Laminates and Profile Pultruded) Exposed to High Temperatures.

| Study | Type<br>GFRP | Type test | Fibers<br>Orientation | Resin Type    | Specimen<br>Dimensions (in<br>mm) | Tg (c) | Tc<br>(c) |    | Modulus<br>losses at<br>Tc | Td<br>(c) |    | Modulus<br>losses at<br>Td |
|-------|--------------|-----------|-----------------------|---------------|-----------------------------------|--------|-----------|----|----------------------------|-----------|----|----------------------------|
| [105] | laminate     | Sheet     | Unidirectional        | Polyester     | 400×48×12                         | 155    | 140       | 43 |                            | 180       | 60 |                            |
| [84]  | laminate     | Sheet     | Woven                 | Polypropylene | 125×105×12                        |        | 80        | 50 |                            | 140       | 93 |                            |
| [106] | laminate     | Sheet     | Woven                 | Viny lester   | 100×100×9                         | 120    | 100       | 55 |                            | 180       | 93 |                            |
|       |              |           |                       |               | I-section (4.3 mm)                |        |           | 47 |                            | 400       | 98 |                            |
| [10m] | Column       | Pultruded | Unidirectional        | Polyester     | C-section (5 mm)                  | 0.5    | 00        | 47 |                            | 400       | 98 |                            |
| [10/] | [107] Column | runnuded  | Ullidirectional       | rolyester     | Box (3 mm)                        | 95 9   | 90        | 50 |                            | 400       | 95 |                            |
|       |              |           |                       |               | Angle (6 mm)                      |        |           | 53 |                            | 400       | 93 |                            |
| [108] | Column       | Pultruded | Unidirectional        | Polyester     | C-Sec.(500×5)mm                   |        | 90        | 44 | 22                         | 120       | 60 | 35                         |
| [103] | Column       | Pultruded | Unidirectional        | Polyester     | C-Sec.(30×4)mm                    |        | 75        | 53 |                            | 250       | 92 |                            |
| [109] | Column       | Pultruded | Unidirectional        | Polyester     | C-Sec.(400×5)mm                   |        | 90        | 42 | 30                         | 250       | 92 | 70                         |
| [69]  | Column       | Pultruded | Unidirectional        | Polyester     | Box (74×3)mm                      |        | 88        | 47 |                            | 175       | 94 |                            |
| [70]  | Column       | Pultruded | Unidirectional        | Polyester     | I-Sec.(50×6)mm                    | 136    | 90        | 56 |                            | 250       | 95 |                            |
| [71]  | Column       | Pultruded | Unidirectional        | Polyester     | Tube (300×3)mm                    | 110    | 80        | 53 |                            | 220       | 90 |                            |

**Table 5** Details of Mathematical Models of Predicting the Compressive Properties of All Types of GFRP When Exposed to High Temperatures.

| Study | Dependent               | Independent | Model                                                                                                                                          | Sample                              | Define<br>Sample                  | Value<br>Sample       | Equation |  |
|-------|-------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|-----------------------|----------|--|
|       |                         |             |                                                                                                                                                |                                     | Specific property compressive     | %                     |          |  |
|       |                         |             |                                                                                                                                                | $P_u$                               | Property at low Temp.             | kN                    |          |  |
| For1  | Compressive             | T           | $P(T) = P_u - \frac{P_u - P_r}{2} \times \left(1 + \tanh\left[k'(T - T_{g, \text{mech}})\right]\right)$                                        | $P_r$                               | The property after Tg.            | kN                    | E- (40)  |  |
| [91]  | Strength                | Temperature | $P(1) = P_{u} - \frac{1}{2} \times (1 + \tanh \left[ K'(1 - I_{g, mech}) \right])$                                                             | k'                                  | Normal distribution fitting curve |                       | Eq. (12) |  |
|       |                         |             |                                                                                                                                                | T                                   | Target value                      | C                     |          |  |
|       |                         |             |                                                                                                                                                | Tg, mech                            | Fitting Tg experimental data.     | C                     |          |  |
|       |                         |             |                                                                                                                                                | Pu                                  | Property at low Temp.             | kN                    |          |  |
|       | Compressive<br>Strength |             |                                                                                                                                                | $P_r$                               | The property after Tg.            | kN                    | Eq. (13) |  |
|       |                         | Temperature | $P(T) = P_r + (P_u - P_r) \times \exp[-(T/T_0)^m]$                                                                                             | T                                   | Target value                      | K                     |          |  |
|       |                         |             |                                                                                                                                                | $T_0$                               | Relaxation Temp. (fitted Exper.)  | K                     |          |  |
|       |                         |             |                                                                                                                                                | m                                   | Weibull exponent (fitted Exper.)  |                       |          |  |
|       | Compressive<br>Strength | Temperature |                                                                                                                                                | $P_{\rm u}$                         | Property at low Temp.             | kN                    | Eq. (14) |  |
| [108] |                         |             | $P(T) = P_u \times [A - (T - B)^n/C]$                                                                                                          | T                                   | Target value                      | C                     |          |  |
| [100] |                         |             |                                                                                                                                                | n                                   | Parameters from a fitting curve   | Table 6               |          |  |
|       |                         |             |                                                                                                                                                | A, B, C                             | Parameters from a fitting curve   | Table 6               |          |  |
|       |                         |             |                                                                                                                                                |                                     | $P_{u}$                           | Property at low Temp. | kN       |  |
| [109] | Compressive             | Temperature | $P(T) = P_r + (P_u - P_r) \times (1 - e^{Be^{C \times T}})$                                                                                    | $P_{r}$                             | The property after Tg.            | kN                    | Eq. (15) |  |
| [109] | Strength                | remperature | $r(1) = r_r + (r_u - r_r) \wedge (1 - \epsilon)$                                                                                               | T                                   | Target value                      | C                     | Eq. (15) |  |
|       |                         |             |                                                                                                                                                | Be, C                               | Parameters from a fitting curve   | Table 6               |          |  |
|       |                         |             |                                                                                                                                                | $P_{g}$                             | Materials properties (glassy)     | kN                    |          |  |
|       |                         |             | $P(T) = P_g \times [1 - \alpha_g(T)] + P_1 \times \alpha_g(T) \times [1 - \alpha_d(T)]$                                                        | $P_l$                               | Materials properties (leathery)   | kN                    | Eq. (16) |  |
| [105] | Compressive<br>Strength | Temperature | $+ P_d \times \alpha_g(T) \times \alpha_d(T)$                                                                                                  | $P_d$                               | Materials Prop. (decomposed)      | kN                    |          |  |
|       | Suengui                 | =           | 1 $1 - \alpha_g(T) \alpha_g(T) \times [1 - \alpha_d(T)] \alpha_g(T) \times \alpha_d(T)$                                                        | T                                   | Target value                      | С                     | E- ()    |  |
|       |                         |             | $\frac{1}{P(T)} = \frac{1 - \alpha_g(T)}{P_g} + \frac{\alpha_g(T) \times [1 - \alpha_d(T)]}{P_1} + \frac{\alpha_g(T) \times \alpha_d(T)}{P_d}$ | $\alpha_{\rm g}$ , $\alpha_{\rm d}$ | (between o and 1) from TGA test   |                       | Eq. (17) |  |

 Table 6 Constant Value for Mathematical Models Mentioned in Some Studies in Table 5.

| Study                                                                                    |         | [108]    |        | Eq. (14) |  |
|------------------------------------------------------------------------------------------|---------|----------|--------|----------|--|
| Temperature                                                                              | A       | В        | С      | n        |  |
| 22 <t<150< td=""><td>1.00</td><td>22</td><td>200</td><td>0.9</td><td></td></t<150<>      | 1.00    | 22       | 200    | 0.9      |  |
| 150 <t<420< td=""><td>0.59</td><td>150</td><td>490</td><td>0.7</td><td></td></t<420<>    | 0.59    | 150      | 490    | 0.7      |  |
| 420 <t<706< td=""><td>0.48</td><td>420</td><td>76,000</td><td>1.8</td><td></td></t<706<> | 0.48    | 420      | 76,000 | 1.8      |  |
| Study                                                                                    |         | [109]    |        | Eq. (15) |  |
| Parameter                                                                                | В       | C        |        |          |  |
| Compressive                                                                              | -5.4468 | -0.0328  |        |          |  |
| Shear                                                                                    | -250.91 | -0.05706 |        |          |  |
| Tensile                                                                                  | -166.89 | -0.0541  |        |          |  |

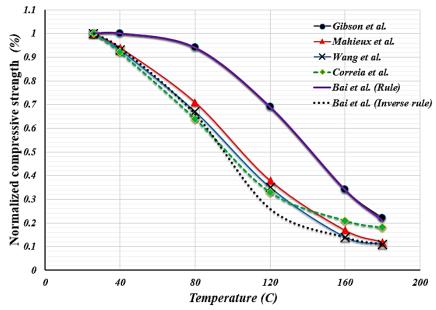



Fig. 9 Temperature Compared with Predicting Models in Compressive Strength Retention.

#### 4.CONCLUSIONS

This paper provides a comprehensive overview properties the mechanical GFRP composites, explicitly focusing on reinforced bars, laminates or sheets, and pultruded materials under high temperatures. Depending on the gets derived from the research, it is possible to draw the following primary observations:

- During put to temperatures exceeding the (Tg), the resin matrix will undergo limited effects, potentially resulting in microcracks. Furthermore, the outer layer of the resin matrix will maintain its rough texture, resembling the sample that has not undergone conditioning. In the present context, diminished strength or modified characteristics are absent in composites made of (GFRP).
- After (GFRP) composites attain their (Tg) temperature, the resin transitions from a rigid, glassy state to a more flexible, rubbery state. In the present context, it is observed that (GFRP) materials exhibit a phenomenon of softening and creeping, leading to a substantial decrease in strength (tensile and compressive) and modulus properties.
- The GFRP materials experience thermal degradation (Td), during which their

organic matrix decomposes. The process of decomposition results in the release of heat, soot, smoke, and toxic volatile substances. Contact with a broad spectrum of high temperatures, mainly ranging (300 - 500) °C, reached the perturbation of chemical interactions, fragmentation of modular chains within the resin, and end of bonds between the fibers. The ignition and burning of the composite material occur at high temperatures.

- Critical temperature (Tc) typically ranges from 300 to 330 °C for (GFRP) bars, 200 to 300 °C for laminates subjected to tension, and 75 to 90 °C for pultruded GFRP profiles experiencing compression.
- **GFRP** composites exhibit lower compressive strength and thermal resistance than their tensile strength and resistance when subjected to loading and exposure temperatures.
- The impact of high temperatures on the elastic modulus of GFRP composites is less significant than the corresponding strength values. The primary reason for this phenomenon is the strong correlation between the (GFRP) composites (elastic modulus value) and the modulus of elastic fibers rather than the resin.

#### **REFERENCES**

- [1] Ali SI, Allawi AA. Effect of Web Stiffeners on the Flexural Behavior of Composite GFRP Concrete Beam under Impact Load. Journal of Engineering 2021; **27**(3): 73-92.
- [2] Saeed YM, Aules WA, Rad FN, Raad AM. Tensile Behavior of FRP Anchors Made from CFRP Ropes Epoxy-**Bonded to Uncracked Concrete for** Flexural Strengthening of RC Columns. Case Studies in Construction Materials 2020; 13: e00435.
- [3] Adam MA, Said M, Mahmoud AA, Shanour **Analytical** AS. **Experimental Flexural Behavior of** Concrete Beams Reinforced with Glass Fiber Reinforced Polymers Construction and Buildina Materials 2015; **84**: 354-366.
- [4] Vieira PSC, de Souza FS, Cardoso DCT, Vieira JD, de Andrade Silva F. **Influence** of Moderate/High Temperatures on the Residual Flexural Behavior of **Pultruded GFRP.** Composites Part B: Engineering 2020; 200: 108335.
- [5] Ashrafi H, Bazli M, Jafari A, Ozbakkaloglu T. Tensile Properties of GFRP Laminates after **Exposure** Elevated Temperatures: Effect of Fiber Configuration, Sample Thickness, and Time of Exposure. Composite Structures 2020; 238: 111971.
- [6] Khotbehsara MM, et al. Effect of **Elevated In-Service Temperature on** the Mechanical Properties and **Microstructure of Particulate-Filled Epoxy Polymers**. *Polymer Degradation* and Stability 2019; 170: 108994.
- [7] Micelli F, Nanni A. Durability of FRP Rods for **Concrete Structures.** Construction and Building Materials 2004; **18**(7): 491-503.
- [8] Chalioris CE, Zapris AG, Karayannis CG. U-Jacketing Applications of Fiber-**Reinforced Polymers in Reinforced** Concrete T-Beams against Shear-Tests and Design. Fibers 2020; 8(2):
- [9] Gao WY, Dai JG, Teng J. Fire Resistance Design of Un-Protected **FRP-Strengthened** RCBeams. Materials and Structures 2016; 49(12): 5357-5371.
- [10] Ibrahim TH, Allawi AA, El-Zohairy A. Experimental and FE Analysis of **Composite RC Beams with Encased** Pultruded GFRP I-Beam under Static Loads. Advances in Structural Engineering 2023; **26**(3): 516-532.
- [11] Ali HH, Said AMI. Flexural Behavior of Concrete Beams with Horizontal and Vertical Openings Reinforced

- by Glass-Fiber-Reinforced Polymer (GFRP) Bars. Journal of the Mechanical Behavior of Materials 2022; 31(1): 407-
- [12] Bazli M, et al. Durability of Glass-Fibre-Reinforced **Polymer** Composites under Seawater and Sea-Sand Concrete Coupled with Outdoor **Environments.** Harsh Advances in Structural Engineering 2021; **24**(6): 1090-1109.
- [13] Chalioris CE, Kosmidou PMK, Papadopoulos NA. Investigation of a New Strengthening Technique for **RC Deep Beams Using Carbon FRP** Ropes as **Transverse Reinforcements**. *Fibers* 2018; **6**(3): 52.
- [14] Ali MI, Allawi AA, El-Zohairy A. Flexural Behavior of Pultruded GFRP-Composite **Beams** Concrete Strengthened with GFRP Stiffeners. Fibers 2024; 12(1): 7.
- [15] Allawi AA, Ali SI. Flexural Behavior of Composite GFRP Pultruded I-Section Beams under Static and Impact Loading. Civil Engineering Journal 2020; 6(8): 1432-1458.
- [16] Bazli M, et al. Durability of Pultruded **GFRP Tubes Subjected to Seawater** Sea Sand Concrete and Seawater **Environments**. Construction Building Materials 2020; 245: 118399.
- [17] Mahmood EM, Allawi AA, El-Zohairy A. Flexural Performance of Encased Pultruded GFRP I-Beam with High Strength Concrete under Static Loading. *Materials* 2022; **15**(13): 4519.
- [18] Bazli M, et al. Concrete Filled FRP-**PVC Tubular Columns Used in the** Construction Sector: A Review. Journal of Composites and Compounds 2020; 2(4): 155-162.
- [19] Ibrahim TH, Allawi AA, El-Zohairy A. Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam. Materials 2022; **15**(2): 441.
- [20] Ibrahim TH, et al. Theoretical Analysis of Composite RC Beams with Pultruded GFRP Beams Subjected to Loading. Impact Engineering, Technology & Applied Science Research 2023; **13**(6): 12097-12107.
- [21] Chowdhury E, Eedson R, Bisby LA, Green Benichou N. Mechanical Characterization of Fibre Reinforced Polymers Materials at High Temperature. Fire Technology 2011; 47(4): 1063-1080.
- [22] Mahmood EM, Allawi AA, El-Zohairy A. Analysis and Residual Behavior of **Encased Pultruded GFRP I-Beam**

- under Fire Loading. Sustainability 2022; 14(20): 13337.
- [23] Mahmood EM, Ibrahim TH, Allawi AA, El-Zohairv A. Experimental Numerical Behavior of Encased **Pultruded GFRP** Beams under Elevated and **Ambient Temperatures**. *Fire* 2023; **6**(5): 212.
- [24] Mouritz AP, Gibson AG. Fire Properties of Polymer Composite Materials. Springer Science & Business Media; 2007.
- [25] Uematsu Y, Kitamura T, Ohtani R. **Delamination Behavior of a Carbon-**Fiber-Reinforced **Thermoplastic** Polymer at High Temperatures. Composites Science and Technology 1995; **53**(3): 333-341.
- [26] Bai Y, Vallée T, Keller T. Modeling of **Thermal** Responses for **FRP** Composites under Elevated and Temperatures. **Composites** Science and Technology 2008; **68**(1): 47-
- [27] Fleischhaker **Glass-Transition.** F. Melting, and **Decomposition Temperatures** of **Tailored Polyacrylates** and **Polymethacrylates: General Trends Structure-Property** Relationships. Macromolecular Chemistry and Physics 2014; **215**(12): 1192-1200.
- [28] Bisby LA. Fire Behaviour of Fibre-Reinforced Polymer (FRP) Reinforced or Confined Concrete. Ph.D. Dissertation, Queen's University Kingston, Canada; 2003.
- [29] Grace N, Bebawy M. Fire Protection for with Fiber-Reinforced **Polymer Flexural Strengthening** Systems. ACI Structural Journal 2014; **111**(3): 537-548.
- [30] Bisby L, Green M, Kodur V. Modeling the Behavior of Fiber Reinforced **Polymer-Confined** Concrete Columns Exposed to Fire. Journal of Composites for Construction 2005; **9**(1): 15-24.
- [31] Dodds N, Gibson A, Dewhurst D, Davies J. Behaviour Fire of Composite **Laminates**. Composites Part A: Applied Science and Manufacturing 2000; **31**(7): 689-702.
- [32] Jafari A, Ashrafi H, Bazli M, Ozbakkaloglu T. Effect of Thermal Cycles on Mechanical Response of Pultruded Glass Fiber Reinforced Polymer Profiles of Different Geometries. Composite Structures 2019; 223: 110959.
- [33] Bazli M, Ashrafi H, Oskouei AV. **Experiments** and **Probabilistic** Models of Bond Strength between GFRP Bar and Different Types of

- under Concrete Aggressive **Environments.** Construction Building Materials 2017; 148: 429-443.
- [34] Ahmad H, Sheikh MN, Hadi MN. Behavior of GFRP Bar-Reinforced Hollow-Core Polypropylene Fiber and Glass Fiber Concrete Columns under Axial Compression. Journal of Building Engineering 2021; 44: 103245.
- [35] Bazli M, et al. Effect of Thickness and Reinforcement Configuration on Flexural and Impact Behaviour of **GFRP** Laminates after Exposure to **Elevated Temperatures**. Composites Part B: Engineering 2019; 157: 76-99.
- [36] Bilotta A, Compagnone A, Esposito L, Nigro E. Structural Behaviour of FRP Reinforced Concrete Slabs in Fire. Engineering Structures 2020; **221**: 111058.
- [37] Mahmoudi S, Faraji G. Fabrication of **Functionally** Graded WCu Composite Via Variable Speed **Induction Sintering and Subsequent Infiltration**. International Journal of Refractory Metals and Hard Materials 2022; **106**: 105857.
- [38] Tan KH, Zhou Y. Performance of FRP-Strengthened Beams Subjected to Elevated Temperatures. Journal of Composites for Construction 2011; **15**(3): 304-311.
- [39] Xu Q, et al. Synergistic Oxidation-Filtration Process of Electroactive Peroxydisulfate with a Cathodic CNT-PPy/PVDF Composite Ultrafiltration Membrane. Water Research 2022; 210: 117971.
- R, et al. Design Characterization of the Carbon Fiber Tube Reinforced Polymer Composite for Full Ocean Depth Submersibles. Composites Science and Technology 2022; 217: 109074.
- [41] Wang XL, Zha XX. Experimental Research on Mechanical Behavior of **GFRP** Bars under High Temperature. Applied Mechanics and Materials 2011; 71: 3591-3594.
- [**42**] Salehi E, et al. **Advances** in Nanocomposite and Nanostructured Chitosan **Adsorbents** Membrane for **Environmental** Remediation: Review. Desalination 2022; 527: 115565.
- [43] Samuel BO, Sumaila M, Dan-Asabe B. Modeling and Optimization of the Manufacturing Parameters of a Hybrid Fiber Reinforced Polymer Composite P X G Y E Z. The International Journal of Advanced Manufacturing Technology 2022; **121**(3): 2345-2356.

- [44]Safri SN, Sultan MT, Saba N, Jawaid M. Effect of Benzoyl Treatment on Flexural and Compressive Properties of Sugar Palm/Glass Fibres/Epoxy Hybrid Composites. Polymer Testing 2018; 71: 362-369.
- [45] Sultan M, et al. Impact Damage Detection and Quantification in CFRP Laminates; a Precursor to Machine Learning. Proceedings of the International Conference **Testing** Composite and Model Identification; 2009.
- [46] Xian G, Guo R, Li C. Combined Effects of Sustained Bending Loading, Water Immersion and Fiber Hybrid **Mode on the Mechanical Properties** of Carbon/Glass Fiber Reinforced Polvmer Composite. Composite Structures 2022; 281: 115060.
- [47] Ascione L, et al. Prospect for New Guidance in the Design of FRP. Ispra: EC Joint Research Centre: 2016.
- [48]Cao S, Wang X, Wu Z. Evaluation and **Prediction** of Temperature-Dependent Tensile Strength of Unidirectional Carbon Fiber-Reinforced Polymer Composites. Journal of Reinforced Plastics and Composites 2011; 30(9): 799-807.
- [49] Gibson A, et al. The Integrity of Polymer Composites During and after Fire. Journal of Composite Materials 2004; **38**(15): 1283-1307.
- [50] Maranan G, Manalo A, Karunasena W, Benmokrane B, Lutze D. Flexural **Behaviour of Glass Fibre Reinforced** Polymer (GFRP) Bars Subjected to **Elevated Temperature**. Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23); Southern Cross University; 2014. pp. 187-192.
- [51] Oskouei AV, Kivi MP, Araghi H, Bazli M. **Experimental Study of the Punching** Behavior of GFRP Reinforced Lightweight Concrete Footing. Materials and Structures 2017; 50(1): 1-
- [52] Wang K, Young B, Smith ST. Mechanical **Properties of Pultruded Carbon** Fibre-Reinforced Polymer (CFRP) Plates at Elevated Temperatures. Engineering Structures 2011; **33**(7): 2154-2161.
- [53] Bazli M, et al. Effects of UV Radiation, **Moisture and Elevated Temperature** on Mechanical Properties of GFRP Pultruded Profiles. Construction and Building Materials 2020; 231: 117137.
- [54] Cabova K, et al. Fire Test of FRP Members Applied to Railway Bridge. Proceedings of the 9th International

- Conference on Structures in Fire; Princeton, USA; 2016. pp. 784-790.
- [55] Ningyun W, Evans J. Collapse of **Continuous Fibre Composite Beams** Elevated Temperatures. Composites 1995; **26**(1): 56-61.
- [56] Correia JR, Bai Y, Keller T. A Review of the Fire Behaviour of Pultruded **GFRP Structural Profiles for Civil Engineering Applications**. *Composite* Structures 2015; 127: 267-287.
- [57] Ismail MF, Sultan MT, Hamdan A, Shah AU, Jawaid M. Low Velocity Impact **Behaviour** and **Post-Impact** of Characteristics **Kenaf/Glass Hybrid Composites with Various** Weight Ratios. Journal of Materials Research and Technology 2019; **8**(3): 2662-2673.
- [58] Lu Z, Xian G, Li H. Effects of Elevated Temperatures on the Mechanical Properties of Basalt Fibers and BFRP Plates. Construction and Building Materials 2016; 127: 1029-1036.
- [59] Maio L, Fromme P. On Ultrasound **Propagation** in Composite **Laminates: Advances in Numerical Simulation**. *Progress in Aerospace* Sciences 2022; 129: 100791.
- [60] Burke PJ, Bisby LA, Green MF. Effects of Elevated Temperature on Near Surface Mounted and Externally **Bonded FRP Strengthening Systems** for Concrete. Cement and Concrete Composites 2013; 35(1): 190-199.
- [61] Firmo J, Correia J. Fire Behaviour of Thermally Insulated RC Beams Strengthened with **EBR-CFRP Strips: Experimental** Composite Structures 2015; 122: 144-154.
- [62] Firmo J, Correia J, Pitta D, Tiago C, Arruda M. **Experimental** Characterization of the **Bond Externally** between **Bonded** Reinforcement (EBR) CFRP Strips and Concrete **Elevated** at Temperatures. Cement and Concrete Composites 2015; **60**: 44-54.
- [63] Ashrafi H, Bazli M, Najafabadi EP, Oskouei AV. The Effect of Mechanical and Thermal Properties of FRP Bars on Their Tensile Performance under **Elevated Temperatures**. Construction and Building Materials 2017; 157: 1001-1010.
- [64]Di Ludovico M, et al. Improved **Mechanical Properties of CFRP** Laminates at **Elevated** Temperatures and Freeze-Thaw **Cycling.** Construction and Building Materials 2012; 31: 273-283.
- [65] Sayed-Ahmed EY, Shrive NG. Smart **FRP Prestressing Tendons:**

- **Properties and Prospects.**Proceedings of the Second Middle East Symposium on Structural Composites for Infrastructure Applications; 1999. pp. 80-93.
- [66] Zhou F, Zhang J, Song S, Yang D, Wang C. Effect of Temperature on Material Properties of Carbon Fiber Reinforced Polymer (CFRP) Tendons: Experiments and Model Assessment. *Materials* 2019; 12(7): 1025.
- [67] Reis J, Coelho J, Monteiro A, da Costa Mattos H. Tensile Behavior of Glass/Epoxy Laminates at Varying Strain Rates and Temperatures. Composites Part B: Engineering 2012; 43(4): 2041-2046.
- [68]Sim J, Park C. Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures. Composites Part B: Engineering 2005; 36(6-7): 504-512.
- [69] Aydin F. Effects of Various Temperatures on the Mechanical Strength of GFRP Box Profiles.

  Construction and Building Materials 2016; 127: 843-849.
- [70] Correia JR, Gomes MM, Pires JM, Branco FA. Mechanical Behaviour of Pultruded Glass Fibre Reinforced Polymer Composites at Elevated Temperature: Experiments and Model Assessment. Composite Structures 2013; 98: 303-313.
- [71] Bai Y, Keller T. Modeling of Strength Degradation for Fiber-Reinforced Polymer Composites in Fire. *Journal* of Composite Materials 2009; 43(21): 2371-2385.
- [72] Kumahara S, Masuda Y, Tanano H, Shimizu A. Tensile Strength of Continuous Fiber Bar under High Temperature. Special Publication 1993; 138: 731-742.
- [73] Nause I. Determination of Temperature-Dependent Tensile Strengths of Combar Reinforcement Bars; Report No: 072/05-Nau-3740/6345. Brunswick Institute for Concrete Material Testing: Brunswick, Germany; 2005.
- [74] Wang YC, Wong P, Kodur V. An Experimental Study of the Mechanical Properties of Fibre Reinforced Polymer (FRP) and Steel Reinforcing Bars at Elevated Temperatures. Composite Structures 2007; 80(1): 131-140.
- [75] Robert M, Benmokrane B. Behavior of GFRP Reinforcing Bars Subjected to Extreme Temperatures. Journal of

- Composites for Construction 2010; **14**(4): 353-360.
- [76] Hamad RJ, Johari MM, Haddad RH. Mechanical Properties and Bond Characteristics of Different Fiber Reinforced Polymer Rebars at Elevated Temperatures. Construction and Building Materials 2017; 142: 521-535.
- [77] Ellis DS, Tabatabai H, Nabizadeh A. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures. *Materials* 2018; 11(3): 346.
- [78] Hajiloo H, Green MF, Gales J.

  Mechanical Properties of GFRP
  Reinforcing Bars at High
  Temperatures. Construction and
  Building Materials 2018; 162: 142-154.
- [79] Alsayed S, Al-Salloum Y, Almusallam T, El-Gamal S, Aqel M. Performance of Glass Fiber Reinforced Polymer Bars under Elevated Temperatures. Composites Part B: Engineering 2012; 43(5): 2265-2271.
- [80] Ashrafi H, Bazli M, Vatani Oskouei A, Bazli L. Effect of Sequential Exposure to UV Radiation and Water Vapor Condensation and Extreme Temperatures on the Mechanical Properties of GFRP Bars. Journal of Composites for Construction 2018; 22(1): 04017047.
- [81] Özkal FM, Polat M, Yağan M, Öztürk MO.

  Mechanical Properties and Bond
  Strength Degradation of GFRP and
  Steel Rebars at Elevated
  Temperatures. Construction and
  Building Materials 2018; 184: 45-57.
- [82] Bazli M, et al. Effect of Fibers Configuration and Thickness on Tensile Behavior of GFRP Laminates Exposed to Harsh Environment. *Polymers* 2019; 11(9): 1401.
- [83] Jarrah M, Najafabadi EP, Khaneghahi MH, Oskouei AV. The Effect of Elevated Temperatures on the Tensile Performance of GFRP and CFRP Sheets. Construction and Building Materials 2018; 190: 38-52.
- [84] Gibson A, Torres MO, Browne T, Feih S, Mouritz A. High Temperature and Fire Behaviour of Continuous Glass Fibre/Polypropylene Laminates.

  Composites Part A: Applied Science and Manufacturing 2010; 41(9): 1219-1231.
- [85] Hawileh RA, Abu-Obeidah A, Abdalla JA, Al-Tamimi A. Temperature Effect on the Mechanical Properties of Carbon, Glass and Carbon–Glass FRP Laminates. Construction and Building Materials 2015; 75: 342-348.

- [86] Foster S, Bisby L. Fire Survivability of Externally **Bonded** FRP Strengthening Systems. Journal of Composites for Construction 2008; 12(5):
- [87] Shekarchi M, Farahani EM, Yekrangnia Ozbakkaloglu T. Mechanical Strength of CFRP and GFRP Composites Filled with APP Fire Retardant Powder Exposed to Elevated Temperature. Fire Safety Journal 2020; 115: 103178.
- **[88]**Bazli Mechanical and Μ. **Microstructural Properties** of Different FRP Composites under Various Environmental Conditions. Ph.D. Dissertation, Monash University Melbourne, Australia; 2020.
- [89] Karayannis CG, Kosmidou PMK, Chalioris **CE. Reinforced Concrete Beams with** Carbon-Fiber-Reinforced Polymer Bars-Experimental Study. Fibers 2018; **6**(4): 99.
- [90] Zeng Y, Caspeele R, Matthys S, Taerwe L. Compressive Membrane Action in FRP Strengthened RC Members. Construction and Building Materials 2016; **126**: 442-452.
- [91] Gibson AG, Wu YS, Evans JT, Mouritz AP. Laminate Theory Analysis Composites under Load in Fire. Journal of Composite Materials 2006; **40**(7): 639-658.
- [92] Hawileh RA, Abdalla JA, Hasan SS, Ziyada MB, Abu-Obeidah A. Models for Predicting Elastic Modulus and Tensile Strength of Carbon, Basalt and Hybrid Carbon-Basalt FRP Laminates **Elevated** at Temperatures. Construction Building Materials 2016; 114: 364-373.
- [93] Saafi M. Effect of Fire on FRP Reinforced Concrete Members. Composite Structures 2002; **58**(1): 11-20.
- [94] Yu B, Kodur V. Effect of Temperature on Strength and Stiffness Properties **Near-Surface Mounted FRP Reinforcement.** Composites Part B: Engineering 2014; **58**: 510-517.
- [95] Najafabadi EP, Khaneghahi MH, Amiri HA, Estekanchi HE, Ozbakkaloglu T. **Experimental Investigation and** Probabilistic Models for Residual Mechanical Properties of GFRP Pultruded Profiles Exposed to Elevated Temperatures. Composite Structures 2019; 211: 610-629.
- [96] Hajiloo H, Green MF, Noël M, Bénichou N, Sultan M. Fire Tests on Full-Scale FRP Reinforced Concrete Slabs. Composite Structures 2017; 179: 705-719.
- [97] Hawileh R, Naser M, Zaidan W, Rasheed H. Modeling of Insulated CFRP-

- Strengthened Reinforced Concrete T-Beam Exposed to Fire. Engineering Structures 2009; 31(12): 3072-3079.
- [98] Correia JR, Branco FA, Ferreira JG, Bai Y, Keller T. Fire Protection Systems for **Building Floors Made of Pultruded GFRP Profiles: Part 1: Experimental Investigations**. Composites Part B: Engineering 2010; 41(8): 617-629.
- [99] Asaro RJ, Lattimer B, Ramroth W. Response Structural of Composites During Fire. Composite Structures 2009; 87(4): 382-393.
- [100] Russo S, Ghadimi B, Lawania K, Rosano M. Residual Strength Testing in Pultruded FRP Material under a Variety of Temperature Cycles and Values. Composite Structures 2015; **133**: 458-475.
- [101] Summers PT, Lattimer B, Case S, Feih S. **Predicting Compression Failure of** Composite Laminates in Fire. Composites Part A: Applied Science and Manufacturing 2012; 43(5): 773-782.
- [102] Mahieux C, Reifsnider KL, Case S. **Property** Modeling across Transition **Temperatures** PMC's: Part I. Tensile Properties. Applied Composite Materials 2001; **8**(4): 217-234.
- [103] Wong P, Davies J, Wang Y. An Experimental and Numerical Study of the Behaviour of Glass Fibre Reinforced Plastics (GRP) Short Columns Elevated at **Temperatures**. Composite Structures 2004; 63(1): 33-43.
- [104] Ibrahim TH, Allawi AA. The Response of Reinforced Concrete Composite **Beams Reinforced with Pultruded** GFRP to Repeated Loads. Journal of Engineering 2023; 29(1): 158-174.
- [105] Bai Y, Keller T. Delamination and Kink-Band Failure of Pultruded **GFRP** Laminates under Elevated Temperatures and Compression. Composite Structures 2011; 93(2): 843-849.
- [106] Feih S, Mathys Z, Gibson A, Mouritz A. Modelling the Tension and Compression Strengths of Polymer Laminates in Fire Composites Science and Technology 2007; **67**(3-4): 551-564.
- [107] Khaneghahi MH, Najafabadi EP, Bazli M, Oskouei AV, Zhao XL. **The Effect of Elevated Temperatures on the** Compressive Section Capacity of **Pultruded GFRP** Profiles. Construction and Building Materials 2020; 249: 118725.
- [108] Wong P, Wang Y. An Experimental Study of Pultruded Glass Fibre

Reinforced **Plastics** Channel **Columns** at **Elevated Temperatures**. Composite Structures

2007; **81**(1): 84-95. **[109]** Currie P, Davies J, Wang Y. **Behaviour** of Short Columns of Pultruded **Channels** at **Elevated** Temperatures. FRP Composites in Civil Engineering Proceedings of the International Conference on FRP Composites in Civil Engineering; Hong Kong Institution of Engineers, Hong Kong Institution of Steel Construction; 2001.