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Abstract: The evolving character of the 

environment makes it challenging to predict 

water levels in advance. Despite being the most 

common approach for defining hydrologic 

processes and implementing physical system 

changes, the physics-based model has some 

practical limitations. Multiple studies have 

shown that machine learning, a data-driven 

approach to forecast hydrological processes, 

brings about more reliable data and is more 

efficient than traditional models. In this study, 

seven machine learning algorithms were 

developed to predict a dam water level daily 

based on the historical data of the dam water 

level. Multiple input combinations were 

investigated to improve the model’s sensitivity, 

and statistical indicators were used to assess 

the reliability of the developed model. The 

study of multiple models with multiple input 

scenarios suggested that the bagged trees 

model trained with seven days of lagged input 

provided the highest accuracy. The bagged tree 

model achieved an RMSE of 0.13953, taking 

less than 10 seconds to train. Its efficiency and 

accuracy made this model stand out from the 

rest of the trained model. With the deployment 

of this model on the field, the dam water level 

predictions can be made to help mitigate issues 

relating to water supply. 
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 تطبيق التعلم الآلي للتنبؤ اليومي بمستويات مياه السدود

 2  أحمد الشافي ،2كريس آرون أنك وينستون  ،1علي نجاح أحمد  ،1  محمد عبدلله المبيضين

 . ماليزيا -سيلانجور  / (UNITEN)  تيناجا الوطنيةجامعة  / ( وقسم الهندسة المدنيةIEIمعهد البنية التحتية للطاقة ) 1
 ماليزيا.  -جامعة مالايا /كلية الهندسة  /قسم الهندسة المدنية  2

 الخلاصة
إن الطبيعة المتطورة للبيئة تجعل من الصعب التنبؤ بمستويات المياه مقدما. على الرغم من كونه النهج الأكثر شيوعًا لتحديد العمليات  
الهيدرولوجية وتنفيذ تغييرات النظام الفيزيائي، فإن النموذج القائم على الفيزياء له بعض القيود العملية. وقد أظهرت دراسات متعددة  

الت  النماذج  أن  بيانات أكثر موثوقية وأكثر كفاءة من  يوفر  الهيدرولوجية،  بالعمليات  للتنبؤ  البيانات  يعتمد على  نهج  علم الآلي، وهو 
ستوى  التقليدية. في هذه الدراسة، تم تطوير سبع خوارزميات للتعلم الآلي للتنبؤ بمستوى مياه السد يومياً بناءً على البيانات التاريخية لم

. تم فحص مجموعات مدخلات متعددة لتحسين حساسية النموذج، وتم استخدام المؤشرات الإحصائية لتقييم موثوقية النموذج  مياه السد
المطور. أشارت دراسة نماذج متعددة ذات سيناريوهات إدخال متعددة إلى أن نموذج الأشجار المعبأة في أكياس، والذي تم تدريبه  

المتأخ المدخلات  من  أيام  سبعة  قيمة  على  كيس  في  المعبأة  الشجرة  نموذج  حقق  دقة.  أعلى  قدم  ، 0.13953قدرها    RMSEرة، 
ثوانٍ. كفاءته ودقته جعلت هذا النموذج متميزًا عن بقية النماذج المدربة. ومع نشر هذا النموذج على    10واستغرق تدريبه أقل من  

 يف المشكلات المتعلقة بإمدادات المياه. أرض الواقع، يمكن إجراء تنبؤات بمستوى مياه السد للمساعدة في تخف

 .نموذج الشجرة المعبأة، التنبؤات، التعلم الالي، مستويات المياه، إمدادات المياه الكلمات الدالة:

1.INTRODUCTION
Dams and reservoirs play an essential role in 
ensuring water resources are utilized for the 
benefit of the community. Hence, it is essential 
to predict the water level in a reservoir 
accurately to manage water resources as 
efficiently as possible [1,2]. The global issue of 
freshwater scarcity necessitates the 
development of native resolutions to 
comprehend the association between water 
supply and demand and respond effectively to 
local water shortages [3,4]. Human activities, 
including population growth and land-use 
changes driven by urbanization, 
industrialization, and agriculture, have 
exacerbated water scarcity [5,6]. The 
cumulative impacts of intensified land-use 
activities and climate change cast uncertainties 
on water resource availability, particularly by 
manipulating surface and groundwater 
hydrological regimes [7–9]. In this context, 
monitoring dam water levels is paramount for 
efficient dam operation and various 
applications such as reservoir management, 
understanding factors influencing water level 
variability, assessing climate change impacts on 
hydrological systems, and maintaining 
freshwater supply [10,11]. Comprehensive 
monitoring enables proactive decision-making, 
optimized water allocation, and adaptive 
strategies development to ensure sustainable 
water resource management amidst evolving 
environmental conditions [5,12]. Furthermore, 
accurate monitoring and forecasting of dam 
water level is critical because it affects 
parameters, such as dam inflows, dam water 
storage, and water release from dam reservoirs, 
evaporation, and infiltration [13,14]. These 
parameters define the dam reservoir 
uncertainties, which are critical in dam 
operations and modeling. The impact of dam 
water levels on rivers is multifaceted, 
encompassing environmental, hydrological, 

and climatic dimensions. Dams, primarily 
constructed for hydropower and water supply, 
threaten freshwater biodiversity and 
downstream ecosystems, affecting local 
communities and wildlife [15,16]. They disrupt 
river continuity, downstream flow, and water 
quality, with implications for flood control, 
water supply, navigation, and aquatic 
ecosystems [17–20]. The natural water level 
fluctuations impact water quality and aquatic 
communities, magnified when dams serve 
multiple non-seasonal purposes [21]. 
Additionally, dam water levels are essential for 
flood forecasting in semi-arid regions [22,23]. 
Climate change-induced rising sea levels 
further influence river salinity worldwide. 
Understanding these dynamics is crucial for 
informed water resource management in a 
changing environment [24]. The problem this 
research addresses is the need for proper water 
resource management, particularly in dams, 
considering the abundant rainfall in Malaysia 
and the potential risks associated with overflow 
caused by heavy downpours or sudden surges in 
water levels [25]. Dam systems are influenced 
by various external variables, such as weather 
conditions, climate patterns, water demand, 
and the presence of other dams in the scheme 
[26]. However, understanding the mechanisms 
and quantifying the effects of these variables 
individually and simultaneously can be 
challenging. While previous studies have 
focused on predicting dam water levels, few 
have quantified the strength and direction of 
the relationships between independent 
variables and dam levels [10]. Previous 
approaches relied on rule curves based on 
climatology, historical inflow analysis, and 
linear mathematical relationships based on 
operators' knowledge and experience [27], 
lacking the precision and adaptability required 
for sustainable dam management in the face of 
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evolving environmental conditions. Therefore, 
the research aims to bridge this gap using data-
driven machine learning models to enhance 
water level forecasting, offering a promising 
avenue for improved dam management 
practices and sustainable water resource 
management [28,29].  The progress and 
improvement of hydrological disciplines, which 
are vital for the efficient management of dams, 
rely heavily on the construction and effective 
operation of reservoirs. To enhance dam 
management practices, many forecasting 
models have been developed recently [30]. The 
primary objective of this research is to identify 
the most practical forecasting model for dam 
water level estimation. Additionally, the study 
aims to assess the feasibility and efficacy of 
utilizing artificial intelligence (AI) techniques 
in providing reliable and accurate information 
compared to conventional models. By exploring 
the potential of AI in the context of dam water 
level estimation, this research contributes to 
the advancement and optimization of reservoir 
design and operation, thereby facilitating 
sustainable water resource management. 
Novelty is further underlined through our focus 
on quantifying relationships between 
independent variables and dam water levels, an 
aspect often overlooked in previous studies. 
The practical implications of our research are 
substantial, promising more efficient dam 
management practices, optimized water 
allocation, and adaptive strategies. This study 
contributes to academic discourse through this 
innovation and offers tangible benefits for real-
world water resource management. The 
research employed various machine learning 
models for daily dam water level forecasting. 
These models included linear regression, 
regression trees, support vector machines 
(SVM), gaussian process regression (GPR), 
kernel approximation regression, ensemble of 
trees, and neural networks (NN). The choice of 
employing multiple models was deliberate, 
allowing for a comprehensive evaluation of 
their performance and suitability for the 
specific forecasting task. Each model was 
assessed to determine its accuracy and 
effectiveness in predicting daily dam water 
levels. This study’s diverse set of models 
provided valuable insights into the strengths 
and limitations of various machine learning 
approaches in the context of dam water level 
forecasting. 

2. METHODOLOGY 
2.1. Data Collection 
The raw data obtained for this project consists 
of historical dam water levels in Durian Tunggal 
Reservoir, Melaka, from the 1st of January 1990 
to the 30th of September 2019, with 8,362 rows 
of data.  Table 1 outlines the summary of the 
water level data statistics. From this table, the 
mean of the water level data is 4.488 m, while 

the median and mode are 4.41 m and 4.21 m, 
respectively. The data standard deviation was 
quite low at 0.303812, which would affect the 
predicted data’s correlation later. Also, the 
range of the data is relatively small at 2.74 m, 
although the data recorded spanned almost 20 
years, which would also affect the training 
model, where it may not be able to predict a 
large range of values. 

Table 1 Summary of Water Level Statistics. 
Water Level Statistics 
Mean 4.488 
Standard Error 0.003322 
Median 4.41 
Mode 4.27 
Standard Deviation 0.303812 
Sample Variance 0.092302 
Kurtosis 3.888060 
Skewness 1.529234 
Range 2.74 
Minimum 3.94 
Maximum 6.68 
Sum 37528.82 
Count 8362 

In addition to the dam water levels, a request 
was made to the Department of Irrigation and 
Drainage (DID) Malaysia to acquire rainfall 
data from the same period. From the map of the 
surrounding location of the Durian Tunggal 
Dam, the nearest rainfall monitoring station 
was found to be at Ladang Sing Lian at 
Bahagian Garing, Melaka. However, out of the 
10,956 rows of water levels given, 4,940 
recorded “NaN – Not a Number,” which means 
that the data was not recorded, whether due to 
faulty instruments or problems relating to data 
logging. 
2.2. Data Partitioning 
In this study, data analysis is crucial for 
evaluating the prediction model's performance. 
Approximately 80% of the available data will be 
dedicated to training the model, while the 
remaining 20% will be utilized to assess the 
accuracy and generalization ability of the 
model. To ensure a comprehensive evaluation, 
different input scenarios will be considered. 
The data will be carefully partitioned, 
organizing the lagged input based on desired 
combinations and enabling a robust 
examination of the model's predictive 
capabilities. The analysis of Table 2 provides 
valuable insights into the statistical properties 
of the training and test data sets. The mean 
between both data has little difference. 
However, standard deviation-wise, the training 
data had a larger value than the test data. Also, 
it can be observed that the training data range 
(2.74) is greater than that of the test data (2.27). 
Differences in range could affect the testing of 
the models’ performance since the trained 
model may not fit the test data well due to the 
small proximity between the range of the two 
data sets. 
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Table 2 Summary of Statistics for Training 
Data and Test Data. 

 Statistics - 
Training Data 

Statistics - 
Test Data  

Mean 4.4782 4.4163 
Standard Error 0.0034 0.0039 
Median 4.42 4.375 
Mode 4.12 4.295 
Standard Deviation 0.3132 0.1808 
Sample Variance 0.0981 0.0327 
Kurtosis 2.8022 17.5564 
Skewness 1.2830 2.9020 
Range 2.74 2.27 
Minimum 3.94 4.05 
Maximum 6.68 6.32 
Sum 38929.2 9592.2 
Count 8693 2172 

2.3.Time Series Forecasting 
Machine learning applications in many fields, 
including the assessment of time series data for 
image, finance, video, and others, depend on 
time series forecasting [31]. Time series 
forecasting tasks can be approached in various 
ways, including using traditional statistical 
methods, machine learning techniques, and 
deep learning techniques. Real-world time 
series data is frequently unstable, hardly 
predictable, and greatly skewed [32–34]. Its 
robustness declines when a model is exposed to 
complicated and noisy settings, especially when 
minor alterations or noises appear in the input 
data. The model's ability suffers to generalize as 
a result. Given that the data used to train the 
machine learning models are historical data of 
the dam water levels,  the appropriate 
forecasting model to be defined for this study is 
time series [28]. 
2.4.Lag Features 
To further increase the models’ sensitivity, 
different scenarios involving lag-time input will 
be fed to the training model to attest to its 
accuracy to be used in the test data later. The 
lag input combinations were done based on a 
correlation study of the raw data [35,36]. The 
sample partial autocorrelation of the water level 
against lag time in Fig. 1 shows that there is a 
decrease in partial autocorrelation as the lag 
time increases and setting the standard 
deviation 2, the lag time of 1 day to 7 days was 
showing within the correlation range to the 
water level at present. 

 
Fig. 1 Partial Autocorrelation of Water Level 

Data. 

Hence, to assess the sensitivity of every model, 
four different input scenarios, as shown in 
Table 3, were studied based on multiple lag-
time combinations. 

Table 3 Input Data Lag-Time Scenarios. 

Scenario Input combination Output 

1 W.L.(t-1)  W.L.(t) 

2 
W.L.(t-1), W.L.(t-2) and 
W.L.(t-3)  

W.L.(t) 

3 
W.L.(t-1), W.L.(t-2), 
W.L.(t-3), W.L.(t-4), and 
W.L.(t-5) 

W.L.(t) 

4 

W.L.(t-1), W.L.(t-2), 
W.L.(t-3), W.L.(t-4), 
W.L.(t-5), 
W.L.(t-6), and W.L.(t-7) 

W.L.(t) 

2.5.Model Evaluation  
2.5.1.Mean Absolute Error 
Mean absolute error (MAE), mined as the 
dataset's overall alteration mean, describes the 
change between the initial and formulaic 
values. The formula for MAE as (Eq.1) [37,38]:  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|

𝑛
𝑖=1                   (1) 

Where Oi is the initial value at time 𝑖, and 𝑃𝑖 is 
the result upon analysis/calculation. 
2.5.2.Mean Square Error 
The average of the squared errors obtained 
from the average squared difference between 
the predicted data and the observed data is 
measured by the Mean Square Error (MSE), an 
indicator for the predicting data. The formula 
for MSE is defined as (Eq.2) [38,39]. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1                  (2) 

2.5.3.Root Mean Square Error (RMSE) 
The Root Mean Square Error (RMSE) is the 
residuals' standard deviation (forecast errors). 
Data points are separated from the regression 
line by residuals. To determine how these 
residuals are distributed, RMSE is calculated as 
(Eq.3) [38,40]. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1              (3) 

2.5.4. Relative Error Percentage 
The trained model chosen from each model is 
tested using the test data by estimating the 
percentage error. The percentage error of the 
simulated in the training phase is also 
calculated using (Eq.4) [41,42]. 

𝐸 (%) =  
(𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)

𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 × 100% (4) 

2.6. Method Flowchart 
The proposed method flowchart for this study’s 
model training and testing is shown in Fig. 2.  

https://tj-es.com/
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Fig. 2 Flow Chart of the Proposed Method in 

this Research. 

3.RESULTS 
The accuracies of different machine learning 
models, i.e., linear regression, regression trees, 
support vector machines, gaussian process 
regression, kernel approximation regression, 
ensemble of trees, and neural networks, were 
studied regarding their performance in 
forecasting daily dam water levels. The model 
was trained using data cleaned by replacing 
missing data with the average of the adjacent 
available values. RMSE is taken as the primary 
evaluation criterion, whereby the lower the 
value, the better the performance of the model 
is. Linear regression models, as shown in 
Table4, performed the best through the 
interactions linear (RMSE = 0.14372) 
technique. On the other hand, the robust linear 
technique showed the highest RMSE values, 
hence providing the worst performance among 
the linear regression models. However, both 
RMSE and MAE values exhibited by all the 
models are low, indicating high accuracies 
achieved. Comparing training time, the robust 
linear had the fastest training speed, although 
interactions linear was also comparable with a 
training time of less than 4 seconds. Stepwise 

linear had the second-best performance (RMSE 
= 0.14376), but it required the longest training 
time among the linear regression models at 
36.83034 seconds. Within the interactions 
linear results, scenario 4 (lag 7) had the lowest 
RMSE, which was also observed in the other 
techniques except for robust linear, where 
scenario 1 (lag 1) resulted in the lowest RMSE. 
Hence, it can be said that greater numbers of 
lagged input results improved the model 
accuracy, such as observed from the 
interactions linear technique – the best-
performing model for linear regression, the 
RMSE decreased from 0.15414 (scenario 1) to 
0.14372 (scenario 4). The test statistics for 
regression trees models are laid out in Table 4 
for their performance in forecasting daily dam 
water levels. Among all the techniques used in 
regression trees, the coarse tree model had the 
lowest RMSE values. In contrast to linear 
regression models, the lowest RMSE value in 
the coarse tree model was observed from 
scenario 2 (lag 3) instead of scenario 4 (lag 7). 
For the fine tree model, on the other hand, 
scenario 1 (lag 1) had the lowest RMSE, similar 
to the medium tree model, which shows that for 
the regression trees model, unlike linear 
regression, more lagged input unnecessarily 
improved the model accuracy. MAE-wise, lower 
scores were also observed, indicating high 
accuracies in the predicted data; however, the 
differences between the models and lagged 
input scenarios were only slight. Regarding 
training time, most regression trees models 
were trained below 3 seconds except for the fine 
tree model that was trained using scenario 3 
(lag 5) input at 4.16650 seconds. The results for 
support vector machines (SVM) models, from 
Table 5, show that the Quadratic SVM 
technique best fit the data with an RMSE value 
of 0.14013, observed when the model was fed 
with scenario 3 (lag 5) data. The RMSE value for 
the Quadratic SVM model improved from 
scenario 1 (RMSE = 0.15179) through scenario 
3 (RMSE = 0.14013); however, recorded a 
higher RMSE value for scenario 4 (RMSE = 
0.14334). This observation indicated that the 
Quadratic SVM model performance may drop if 
lagged inputs exceed five days. Although 
Quadratic SVM had the best performance in 
terms of accuracy (RMSE), training of the 
model took some time, with training time 
ranging from 175.98614 seconds (scenario 1) to 
772.64001 seconds (scenario 4). The fastest 
model for training among the SVM models was 
the coarse Gaussian SVM, with its lowest time 
record of 8.92334 seconds. In terms of worst 
performance, the Cubic SVM not only recorded 
a significant RMSE value at 0.39031 (scenario 
2), but it also took the longest time to train, with 
training time ranging from 730.39128 seconds 
(scenario 3) to 827.29482 seconds (scenario 1). 
This observation indicates that the training 
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time may not necessarily be affected by the 
number of lagged inputs but depends on the 
model type. Furthermore, the MAE values for 
cubic SVM models were not only the highest 
within the SVM models but also among all the 
machine learning models used, with the highest 
MAE recorded at 0.30239. The ensemble of 
trees models performance results are 
illustrated in Table 5. By analyzing the two 
techniques used under the ensemble of trees 
models, bagged trees indicated better 
performance with respect to RMSE, MAE, and 
MSE than the boosted trees model. When 
trained with scenario 4 (lag 7) input, bagged 
trees produced the best RMSE value (0.13953) 
compared to the rest. The trend in RMSE value 
for the bagged trees model showed increased 
performance as the number of lagged inputs 
increased. From scenario 1 (lag 1) to scenario 2 
(lag 3), the RMSE decreased by 78.1%, then 
further decreased by 85.4% from scenario 2 to 
scenario 3 (lag 5). The RMSE decreased by 
85.0% from scenario 3 to scenario 4 (lag 7), 
giving a value of 0.13953, the lowest RMSE 
value achieved among all the models. 
Regarding MAE, boosted trees had values in the 
range of 0.19347 (scenario 3) to 0.19571 
(scenario 1), while bagged trees had values less 
than half of that, with the highest being 
0.07068 (scenario 1) and the lowest being 
0.06814 (scenario 4). Training time for the 
ensemble of trees models is also significantly 
better than the previous three models (SVM, 
GPT, and Kernel Approximation Regression), 
with the longest training time recorded being 
only 10.74819 seconds (bagged trees – scenario 
3). Even with the best RMSE performance, 
bagged trees, when trained with seven days of 
lagged inputs, only took 9.98769 seconds to 
train. Table 6 outlines the performance of 
Gaussian Process Regression (GPR) models. It 
can be seen from the RMSE values that the best-
performing model is the rational quadratic GPR 
with an RMSE of 0.14478 (scenario 3), while 
the worst-performing model is the Matern 5/2 
GPR with an RMSE of 0.16456 (scenario 3). 
Lagged input wise showed similar observation 
with the SVM model with the rational quadratic 
GPR model, whereby scenario 3 (lag 5) gave the 
best performing model, and the RMSE 
improved from scenario 1 (0.15067) through 
scenario 3 (0.14478); however, increased again 
with scenario 4 (0.14585). Out of all the 
machine learning models used, GPR models 
took the longest train time, whereas even the 
fastest one (exponential GPR – scenario 2) took 
299.94653 seconds to train. The best-
performing technique (rational quadratic GPR) 
took the longest time to train at 656.97358 
seconds (scenario 3). The GPR models 
performed well with low RMSE (0.14478-
0.16456) and low MAE values (0.06981-
0.09811).  Table 6 shows a comparison between 

the Kernel Approximation Regression models. 
Two techniques were used, i.e., SVM kernel and 
least squares regression kernel. The latter 
proved to be the best model with an RMSE of 
0.14772 scenario 2 (lag 3). Similar to regression 
trees models, the best performance came about 
when the model was fed-trained with three days 
of lagged input. By analyzing the RMSE for the 
least squares regression kernel, it increased to 
0.16953 for scenario 3 and 0.17713 for scenario 
4. The performance decreased when a lagged 
input of more than 3 was used. Although it was 
found to be the inferior model, the SVM kernel 
still had decent RMSE values within the range 
of 0.16394 (scenario 4) to 0.17500 (scenario 1). 
MAE-wise, several SVM and least squares 
kernel results exhibited values of more than 0.1 
compared to some of the previous models. For 
both kernel models, training time was faster for 
scenario 1 input; however, the rest required 
more than 250 seconds to train. Table 7 shows 
the test performance for neural networks (NN) 
models in forecasting dam water levels. Five 
techniques of neural networks were used under 
this set of models, namely narrow NN, medium 
NN, wide NN, bilayered NN, and trilayered NN. 
Among these five models, trilayered NN 
produced the best results with an RMSE of 
0.13963. The worst RMSE among the NN 
models was observed with wide NN with an 
RMSE of 0.15602. Analyzing the RMSE of 
trilayered NN, the trend in RMSE values 
decreased from scenario 1 (lag 1) to scenario 2 
(lag 3) by 0.00902, then further decreased from 
scenario 2 to scenario 3 (lag 5) by 0.00229. 
However, the RMSE increased by 0.00230 to 
0.14192 from scenario 3 to scenario 4 (lag 7). 
For MAE, the difference between all the models 
was minimal. Training time, however, differed 
across the NN models, with narrow NN having 
the fastest average training time of 35.26071 
seconds, and the slowest one was recorded by 
wide NN with an average training time of 
298.4019 seconds. 
3.1.Analysis of Best Models 
The analysis of the best models is further 
discussed in this section regarding the errors 
produced by the prediction model and their 
accuracies. The best models were chosen based 
on their RMSE values concerning the learning 
technique under each set of models and the 
number of lagged inputs used to train the 
particular model. To generate the residuals for 
the responses from each of the best models, the 
relative error percentage was calculated using 
(Eq. 4). 
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Table 4 Performance of Linear Regression and Regression Trees Models. 
Linear Regression Models 

Scenario 
(Lag time) 

MAE MSE RMSE 
Training 
time (s) 

MAE MSE RMSE 
Training 
time (s) 

Linear Interactions Linear 
1 (1) 0.070 0.023 0.154 6.191 0.070 0.02376 0.154 1.627 
2 (3) 0.071 0.021 0.147 6.030 0.073 0.02164 0.147 3.059 
3 (5) 0.070 0.021 0.145 6.827 0.072 0.02080 0.144 3.219 
4 (7) 0.069 0.020 0.144 5.969 0.071 0.02066 0.143 3.008 
Robust Linear Stepwise Linear 
1 (1) 0.06804 0.02551 0.15972 2.33835 0.070 0.023 0.154 1.128 
2 (3) 0.07001 0.02727 0.16512 1.32472 0.073 0.021 0.147 3.247 
3 (5) 0.07004 0.02734 0.16535 1.56779 0.072 0.020 0.144 9.318 
4 (7) 0.07004 0.02734 0.16534 1.64564 0.071 0.020 0.143 36.830 

Regression Trees Models. 
Fine Tree Medium Tree 
1 (1) 0.070 0.022 0.151 1.696 0.070 0.023 0.153 1.147 
2 (3) 0.083 0.026 0.161 1.576 0.078 0.024 0.155 1.183 
3 (5) 0.085 0.026 0.163 4.166 0.076 0.024 0.155 0.953 
4 (7) 0.085 0.026 0.163 2.659 0.082 0.024 0.156 1.144 
Coarse Tree 

 
 

1 (1) 0.070 0.022 0.150 0.461 
2 (3) 0.071 0.021 0.147 2.861 
3 (5) 0.073 0.022 0.149 2.417 
4 (7) 0.074 0.022 0.149 0.774 

Table 5 Performance of Support Vector Machines (SVM) and Ensemble of Trees Models 
Support Vector Machines (SVM) Models 

Scenario 
(Lag 
time) 

MAE MSE RMSE 
Training 
time (s) 

MAE MSE RMSE 
Training 
time (s) 

Linear SVM Quadratic SVM 
1 (1) 0.066 0.024 0.156 22.918 1 (1) 0.067 0.023 0.151 
2 (3) 0.067 0.022 0.151 107.382 2 (3) 0.066 0.019 0.141 
3 (5) 0.066 0.022 0.149 111.419 3 (5) 0.065 0.019 0.140 
4 (7) 0.066 0.022 0.148 106.448 4 (7) 0.065 0.020 0.143 
Cubic SVM Fine Gaussian SVM 
1 (1) 0.067 0.023 0.151 175.968 0.066 0.022 0.149 9.793 
2 (3) 0.066 0.019 0.141 735.656 0.067 0.021 0.146 12.186 
3 (5) 0.065 0.019 0.140 691.765 0.071 0.021 0.148 12.952 
4 (7) 0.065 0.020 0.143 772.640 0.078 0.023 0.151 14.663 
Medium Gaussian SVM Coarse Gaussian SVM 
1 (1) 0.065 0.022 0.151 9.285 0.066 0.022 0.151 8.923 
2 (3) 0.062 0.020 0.142 10.068 0.063 0.020 0.141 10.505 
3 (5) 0.062 0.020 0.142 9.292 0.063 0.020 0.141 10.224 
4 (7) 0.063 0.020 0.142 9.218 0.063 0.020 0.141 8.940 

Ensemble of Trees Models 
Boosted Trees Bagged Trees 
1 (1) 0.195 0.055 0.236 6.574 0.070 0.023 0.151 5.411 
2 (3) 0.193 0.054 0.234 4.748 0.070 0.020 0.141 6.578 
3 (5) 0.193 0.054 0.233 5.641 0.069 0.019 0.140 10.748 
4 (7) 0.193 0.054 0.234 4.684 0.068 0.019 0.139 9.987 

Table 6 Performance of Gaussian Process Regression (GPR) and Least Squares Regression Kernel 
Models 

Gaussian Process Regression (GPR) Models 
Scenario 
(Lag time) 

MAE MSE RMSE 
Training 
time (s) 

MAE MSE RMSE 
Training 
time (s) 

Squared Exponential GPR Matern 5/2 GPR 
1 (1) 0.070 0.022 0.150 311.315 0.069 0.022 0.150 338.093 
2 (3) 0.071 0.022 0.148 323.190 0.071 0.022 0.148 326.542 
3 (5) 0.073 0.022 0.150 346.844 0.098 0.027 0.164 391.514 
4 (7) 0.072 0.021 0.148 346.812 0.093 0.026 0.162 390.422 
Exponential GPR Rational Quadratic GPR 
1 (1) 0.069 0.022 0.150 343.616 0.070 0.022 0.150 478.592 
2 (3) 0.080 0.024 0.157 299.946 0.082 0.025 0.158 606.332 
3 (5) 0.077 0.023 0.151 335.346 0.072 0.020 0.144 656.973 
4 (7) 0.074 0.021 0.147 364.456 0.074 0.021 0.145 645.811 

Least Squares Regression Kernel 
SVM Kernel Least Squares Regression Kernel  
1 (1) 0.107 0.030 0.175 137.699 0.130 0.032 0.180 138.909 
2 (3) 0.073 0.026 0.164 262.390 0.074 0.021 0.147 268.673 
3 (5) 0.083 0.029 0.171 258.738 0.090 0.028 0.169 267.650 
4 (7) 0.081 0.026 0.163 277.145 0.102 0.031 0.177 285.469 
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Table 7 Performance of Neural Networks (NN) Models. 
Scenario 
(Lag time) 

MAE MSE RMSE 
Training 
time (s) 

MAE MSE RMSE 
Training 
time (s) 

Narrow Neural Network Medium Neural Network 
1 (1) 0.069 0.022 0.150 19.047 0.069 0.022 0.150 51.744 
2 (3) 0.069 0.020 0.141 28.059 0.066 0.019 0.140 82.449 
3 (5) 0.069 0.020 0.143 32.917 0.069 0.020 0.142 89.003 
4 (7) 0.068 0.020 0.142 61.018 0.071 0.021 0.145 124.859 
Wide Neural Network Bilayered Neural Network 
1 (1) 0.069 0.022 0.150 213.787 0.070 0.022 0.150 74.559 
2 (3) 0.073 0.022 0.149 301.326 0.069 0.020 0.141 163.370 
3 (5) 0.074 0.022 0.150 311.964 0.069 0.019 0.141 157.697 
4 (7) 0.080 0.024 0.156 366.529 0.068 0.019 0.140 177.217 
Trilayered Neural Network 

 
1 (1) 0.070 0.022 0.150 133.197 
2 (3) 0.068 0.020 0.141 237.346 
3 (5) 0.066 0.019 0.139 229.250 
4 (7) 0.069 0.020 0.141 253.193 

With the relative error percentage, a graph was 
plotted using the relative error percentage to 
visualize the errors produced by the model for 
every predicted response. The maximum and 
minimum error percentages were also noted for 
each residual graph. In addition, a graph of 
predicted response against actual response was 
also plotted for each best-performing model 
with a diagonal line passing through the origin, 
indicating the perfect prediction of where all 
the plots were supposed to be if the model was 
perfect. The analysis of the results involved 
evaluating various models to predict dam water 
levels using different input combinations. The 
best performer among the linear regression 
models was the "interactions linear" model with 
scenario 4 (lag 7) lagged data as input. It 
achieved a prediction accuracy ranging from -
22.8% to +30.7%, as shown in Fig. 3, 
illustrating the best models’ residuals or 
relative percentage error. While most of the 
plots lie along the line of perfect prediction, 
outliers became more apparent when the 
actuals were greater than 4.5 m. The 
underestimation seemed more severe when the 
actuals were more than 5 m, where prediction 
values mainly lie below 5 m even with 
increasing actuals. The furthest outlier was 
(6.32, 4.379), which depicts the maximum 
relative percentage error of +30.7%, as shown 
in Fig. 4. In the regression trees models, the 
"coarse tree" with scenario 2 as input stood out 
as the top performer with an RMSE of 0.14770. 
Its prediction accuracy ranged from -26.4% to 
+30.1%, as shown in Fig. 3. Although the 
majority of the plots lie along the diagonal line 
of perfect prediction, outliers became more 
pronounced when the actuals were greater than 
4.75 m and became more severe when the 
actuals were more than 5 m where more 
prediction values lie below 4.75 m even with 
increasing actuals. The furthest outlier was 
(6.32, 4.415), depicting the maximum relative 
percentage error of +30.1%, as shown in Fig. 4. 
Among the Support Vector Machines (SVM) 
models, the "quadratic SVM" with scenario 3 as 

input was the best model with an RMSE of 
0.14770. It achieved a prediction accuracy 
ranging from -14.8% to +30.8%, as shown in 
Fig. 3. While most plots lay along the diagonal 
line of perfect prediction, more outliers become 
apparent when the actuals are greater than 5 m. 
Actuals greater than 5 m predicted a response 
of mostly below 4.75 m, and the furthest outlier 
was found to be (6.32, 4.373), which explains 
the maximum relative percentage error of 
+30.8%, as shown in Fig. 4. The Rational 
Quadratic Gaussian Process Regression (GPR) 
model that performed the best was the one with 
scenario 3 as input, achieving an RMSE of 
0.14778. It provided a prediction accuracy 
ranging from -16.4% to +29.8%, as shown in 
Fig. 3. While most of the plots lay along the 
diagonal line of perfect prediction, more 
outliers become apparent when the actuals 
were greater than 5 m, where actuals of greater 
than 5 m had a predicted response of mostly 
below 4.8 m, and the furthest outlier was (6.32, 
4.485), which explains the maximum relative 
percentage error of +29.0%, as shown in Fig. 4. 
Among the kernel approximation regression 
models, the "least square regression kernel" 
with scenario 2 as input emerged as the top 
performer with an RMSE of 0.14472. Its 
prediction accuracy ranged from -22.9% to 
+30.4%, as shown in Fig. 3. Although most 
plots lie along the diagonal line of perfect 
prediction, outliers became obvious when the 
actuals were greater than 4.8 m. The 
underestimation seemed more severe when the 
actuals were more than 5 m, where prediction 
values mostly lay below 4.8 m even as actuals 
increased. The furthest outlier was (6.32, 
4.401), depicting the maximum relative 
percentage error of +30.4%, as shown in Fig. 4. 
In the ensemble of trees models, the "bagged 
trees" with scenario 4 as input was the best 
model with an RMSE of 0.13953. Its prediction 
accuracy ranged from -13.3% to +30.4%, as 
shown in Fig. 3. Although the majority of the 
plots laid along the diagonal line of perfect 
prediction and observably better than the 
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previous other models, outliers became more 
apparent when the actuals were greater than 
4.9 m and became more severe when the actuals 
were more than 5 m where more prediction 
values lay below 4.8 m even with increasing 
actuals. The furthest outlier was (6.32, 4.402), 
depicting the maximum relative percentage 
error of +30.4%, as shown in Fig. 4. Among the 
neural network (NN) models, the "trilayered 
NN" with scenario 3 as input achieved the best 
performance with an RMSE of 0.13963. Its 
prediction accuracy ranged from -20.8% to 
+30.5%, as shown in Fig. 3. Although most plots 
lay along the diagonal line of perfect prediction, 
outliers became obvious when the actuals were 

greater than 4.9 m. The underestimation 
seemed more severe when the actuals were 
more than 5 m, where prediction values mostly 
lay below 4.7 m even as actuals increased. The 
furthest outlier was (6.32, 4.392), depicting the 
maximum relative percentage error of +30.5%, 
as shown in Fig. 4. In summary, the analysis 
indicated that although the "bagged trees" and 
"trilayered NN" models performed relatively 
better with smaller RMSEs, they, like other 
models, tended to underestimate dam water 
levels, especially when they exceeded 5 meters. 
Further improvements may be needed to 
address this underestimation issue in future 
model development. 

 
Fig. 3 Residuals for Best Models Responses for Best Models. 

https://tj-es.com/


 

 

Mohammad Abdullah Almubaidin, Ali Najah Ahmed, Chris Aaron Anak Winston, Ahmed El-Shafie / Tikrit Journal of Engineering Sciences 2023; 30(4): 74-87. 

Tikrit Journal of Engineering Sciences Volume 30 No. 4 2023  83 Page 

 
Fig. 4 Predicted Response vs. Actual Response for Best Models.

3.2.Summary of Results and Discussion 
Among the models considered, the ensemble of 
bagged trees exhibited the most promising 
performance, achieving impressive metrics 
with an RMSE of 0.13953, MAE of 0.06814, and 
MSE of 0.01947. Notably, this high accuracy 
was obtained when the model was trained using 
a combination of lagged input variables within 
scenario 4. Comparatively, the nearest 
contender to the bagged tree model was the 

trilayered neural network (NN), which achieved 
an RMSE of 0.13963 when trained with input 
features from scenario 3.  However, it is crucial 
to consider not only the predictive performance 
but also the computational efficiency of these 
models. In terms of training time, the bagged 
trees model demonstrated remarkable 
efficiency, requiring only 9.98769 seconds to 
train, even with a more extensive dataset 
featuring a 7-day lag. In stark contrast, the 
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trilayered NN took a significantly longer time, 
clocking in at 229.25001 seconds for training 
with a 5-day lag input. This substantial 
difference in training times is a noteworthy 
factor for practical deployment. On the other 
hand, the cubic SVM model exhibited the 
poorest performance among all models, 
yielding an RMSE of 0.39031 when trained with 
input features from scenario 2. This cubic SVM 
model also required an extensive training time 
of 770.23084 seconds with the same input 
configuration. When comparing the RMSE of 
the worst-performing model (cubic SVM) with 
the best-performing model (bagged trees), a 
substantial 179.7% difference becomes 
apparent, underscoring the significance of 
model selection. To provide a comprehensive 
overview of the best-performing models across 
various machine learning techniques, it must 
also consider the rational quadratic GPR model, 
which yielded an RMSE of 0.14478. While this 
GPR model performed less favorably than the 
bagged trees, the difference in RMSE between 
the two models was comparatively modest, at 
3.8%. Given its relatively competitive 
performance, this finding suggests that the GPR 
model might offer a viable alternative for 
specific applications. The present analysis 
highlights the bagged trees ensemble model as 
the standout performer in terms of predictive 
accuracy and training efficiency. However, 
further investigation is required to investigate 
the reasons behind the observed discrepancies 
and to elucidate their practical implications. 
Such insights can guide the selection of the 
most suitable model for specific applications 
and contribute to a deeper understanding of the 
predictive capabilities of these machine 
learning algorithms. Upon conducting 
correlation analysis through partial 
autocorrelation function, four different input 
scenarios were used to train each of the 
techniques under the seven groups of models. 
Analysis of the model performance indicated 
that the bagged trees under an ensemble of tree 
models provided the highest accuracy based on 
a few indicators. However, despite their high 
accuracies, all the models' underestimation 
tendency is still observed. This study affirms 
that developing machine learning models is 
possible with lagged historical data as input for 
training with a greater lag scenario providing 
better accuracy, as observed with the bagged 
trees model. Accurate predictions of dam water 
levels are attainable with most models. Still, low 
standard deviation in the raw data due to 
minimal data dispersion can lead to a less 
successful model development. Nonetheless, 
with the accuracy achieved, the model 
identified can be used to manage water 
resources for the dam reservoir’s area and 
mitigate potential water-related risks. Using 
the model for daily forecast gives an idea of how 

much water will be left for consumption the 
next day, and this can help authorities prepare 
for any action required should the water be 
below minimum. Still, dam water levels should 
be monitored constantly since the forecast 
model, although accurate, is not perfect. One of 
the possible limitations of this study is the 
location of the study. While it has been proven 
many times that machine learning could 
successfully be used to predict water levels, the 
dam’s location may play a role in whether 
training a model may be redundant. One of the 
reasons is that if there is a manual interference 
to the river flow, such as pumping in water from 
different river sources when the water level gets 
critical every day, the representation of how the 
water level behaves naturally has already been 
altered should such action is done on an 
inconsistent basis because machine learning is 
a data-driven method; therefore, it relies on the 
description of the trained data to develop itself. 
Furthermore, another limitation of this study is 
the consistency of data. Where the count was 
supposed to be 10,865 days between the start 
and end of the dataset, only 8,362 rows of data 
were recorded, which means that around 2,500 
rows of data were not recorded and had to be 
replaced with another value. Similarly, this 
means that about 20% of the data were artificial 
and ineffectively represent the real situation of 
the water levels for the model to train on. 

4.CONCLUSIONS 
The present study investigates the capability of 
different machine learning models, namely, 
linear regression, regression trees, support 
vector machines (SVM), gaussian process 
regression (GPR), kernel approximation 
regression, ensemble of trees, and neural 
networks (NN) to forecast daily dam water 
levels specifically at Durian Tunggal Reservoir, 
Melaka. The choice of employing multiple 
models was deliberate, allowing for a 
comprehensive evaluation of their performance 
and suitability for the specific forecasting task. 
Each model was assessed to determine its 
accuracy and effectiveness in predicting daily 
dam water levels. The diverse set of models 
utilized in the present study provided valuable 
insights into the strengths and limitations of 
various machine learning approaches in the 
context of dam water level forecasting. Upon 
conducting correlation analysis through partial 
autocorrelation function, four different input 
scenarios were used to train each of the 
techniques under the seven groups of models. 
Analysis of the model performance indicated 
that the bagged trees under an ensemble of tree 
models provided the highest accuracy based on 
a few indicators. However, despite their high 
accuracies, all the models' underestimation 
tendency is still observed. The present study 
demonstrates the feasibility of developing 
machine learning models using lagged 
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historical data as input, with a notable 
improvement in accuracy observed when 
employing a greater lag scenario, as exemplified 
by the bagged trees model. This research 
suggests that accurate predictions are 
achievable with various models, which can be 
valuable for managing water resources and 
mitigating risks. However, the study 
acknowledges limitations. The dam’s location 
and potential manual interventions in river 
flow could affect model accuracy. Additionally, 
data consistency issues, with missing and 
artificially replaced data, may impact model 
training. Despite these limitations, with the 
accuracies achieved with the model, 
deployment is possible not only at the site of the 
study but also at other dams around Malaysia 
or in areas with similar climates and 
characteristics. Furthermore, integrating 
multiple sensors and input parameters such as 
rainfall and evaporation rate with the model 
can aid in the better forecast of dam water 
levels. 
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