

ISSN: 1813-162X (Print) ; 2312-7589 (Online) Tikrit Journal of Engineering Sciences

available online at: <u>http://www.tj-es.com</u>

Zedan AJ, Abbas HH. Experimental Investigation of Square Footing Resting on Sand over Gypseous Soils. *Tikrit Journal of Engineering Sciences* 2020; **27**(1): 30-39.

Adnan Jayed Zedan Heba H. Abbas

Department of Civil Engineering, College of Engineering, Tikrit University, Iraq

Keywords:

Shallow foundation Two layers of soil Gypseous soil Sandy soil Soaking

ARTICLE INFO

Article history:

Received	14 November 2019
Accepted	20 February 2020
Available online	28 February 2020

Experimental Investigation of Square Footing Resting on Sand over Gypseous Soils

ABSTRACT

This study included (40) tests of loading a square footing (100*100 mm) resting on two layered soils (sand over gypseous soils) using a steel box with the dimensions of (900*900*500 mm). Gypseous soil was brought from Tikrit-University with gypsum content 61%. The tests were divided into two groups. The first groups included (4) tests for gypseous soil only by using the field and maximum densities (14.5, 18.75 kN/m3) respectively, without soaking and with soaking where gypseous soil lost a great value of its resistance. The second group included (36) tests of loading two layers of soil by replacing a layer of gypseous soil by sandy soil with relative density (30%, 60%, and 80%) and depths (B/2, B and 3/2 B). The results showed that the replacement process gave an improvement in the bearing capacity when the gypseous soil also show that the soaking of gypseous soil under the sandy layer affects on the resistance of sand through reducing it especially when the depth of sand was (B/2) this effect decreased gradually with increase in the depth of the sandy layer.

2019 TJES, College of Engineering, Tikrit University

DOI: https://doi.org/10.25130/tjes.27.1.05

عدنان جايد زيدان/ قسم الهندسة المدنية، كلية الهندسة ، جامعة تكريت ، صلاح الدين، العراق هبة حفظي عباس/ قسم الهندسة المدنية، كلية الهندسة ، جامعة تكريت ، صلاح الدين، العراق

الخلاصة

الكلمات الدالة: اساس ضحل، طبقتين من التربة، تربة جبسية، تربة رملية، غمر.

^{*} Corresponding Author: E-mail: jayedadn@tu.edu.iq

1. Introduction

A shallow foundation is one of the major categories of foundations. Individual footings Plate (1), square or rectangular in-plane, that support columns and strip footings that support walls and other similar structures are generally referred to as shallow foundations [1].

Plate (1) Individual footings

The design of foundation depends on the ultimate bearing capacity of soil beneath the foundation and the tolerable settlement that footing can suffer without any adverse result on the superstructure. Studying the characteristics and behavior of soil beneath the structure is a very important matter to ensure that no problems occur in the structure resulting from the lack of knowledge about the soil. Gypseous soil is a type of soil that covers large areas of Iraq (more than 20%), [2]. It is concentrated in Mosul, Baiji, Tikrit, Samarra, North West of Baghdad, Anna, Heet, Ramadi, Fallujah and it may be found in other regions [3]. This soil contains adequate quantities of gypsum (hydrated calcium sulfate CaSO₄.2H₂O) and is considered as a collapsible soil or metastable soil.

Many researchers studied the behavior of shallow foundation resting on two layers of soil as Button [4]

studied the bearing capacity of a strip footing resting on two layers of clay, Reddy and Srinivasan [5] which extended the work of Button [4], Brown and Meyerhof [6] studied stiff clay layer overlying a soft clay layer and a soft clay layer overlying stiff clay layer, Meyerhof [7] investigated sand layer overlying clay layer.

Many researchers studied the improvement of the gypseous soil. Abid Awn [8] studied the improvement of gypseous soil by pre-wetting and the result shows a large decrease in percentage of (foundation settlement / foundation width) specially in the third recycle of soaking with water and the value of this reduction is Ibrahim and Schanz [9] studied the (91)%. improvement of gypseous soil using Silica oil, the results show that this material improves the compressibility and shear strength of soil. Zedan, et. al. [10] used the mixture of (concrete waste and asphalt waste) as addition to the gypseous soil, they found that, the values of cohesion and angle of internal friction increase with the increase of concrete wastes, in which the cohesion increases in a magnitude of 100% and angle of internal friction in a magnitude of 14%, the value 8% represents the optimum percentages. When asphalt mixture wastes are added, the cohesion increases in a magnitude of 112% with a decrease in the angle of internal friction in a magnitude of 2% and the optimum percentage is 108% with an increase in the angle of internal friction in a magnitude of 14%.

2. Experimental Program

2.1 Apparatus and Procedures

2.1.1 The text box

The soil beds are prepared in a steel box with inside dimensions (900 mm* 900 mm* 500 mm) in height as shown in the Plate (2).

Plate (2) The test box

The sides and the bottom are made of 6 mm thickness plate. A valve is fixed in the lower part of the box. This valve is connected with 500 mm vertical plastic cylinder tube. This tube is used to notice the level of water, the bed of soil as a piezometer, and as an indication when the soil becomes at the saturating stage. The filter material is placed at the lower part of the steel model to allow the soaking water to infiltrate through the filter material without the loss of soil particles. A perforated steel plate of 4 mm thickness is placed under the filter material. The plate is supported by four steel channels, with 150 mm high from the base of the steel box. Mark lines are drawn to give the required thickness of the layers.

Table 1

Properties of soils

2.1.2. The soil's samples

Gypseous soil was collected from Tikrit University from depth ranging (1.5-2.0) m below the natural ground level after removing the upper soil strata. The sand used in the tests was brought from Tikrit city. The sandy soil sieved through sieve No.4 (4.75 mm) to make sure that no gravels will remain in the sand. The properties of both soils were found and the results were obtained in the Table (1) and Table (2). Gypsum content is found by using Al-Mufty and Nashat method [11]. All classification tests were done according to (ASTM) [12].

Properties		Gypseous soil	Sandy soil	Specification
	Moisture content,(ω %)	5.5	2.00	ASTM D-2216
	Specific gravity,(Gs)	2.48	2.61	ASTM D-854
A 1 1° °.	Liquid limit L.L	N.L	N.L	ASTM D-4318
Atterberg mints	Plastic limit P.L	N.P	N.P	ASTM D-4318
	Gravel	6.92	0.00	_
M.I.T Classification	Sand	86.35	97.29	_
Classification	Fines	6.72	2.71	_
Coeffi	Coefficient of uniformity (Cu)		2.71	ASTM D-421
Coefficient of curvature (Cc)		1.2	0.86	ASTM D-421
Unified soil classification		SP	SP	_
Minimum dry u	Minimum dry unit weight, (γ_{min}) kN/m ³		13.88	ASTM D-4254
Field u	nit weight, (γ_{field}) kN/m ³	14.5	_	ASTM D-1556
Compaction characteristics	Max unit weight (kN/m ³)	18.75	17.44	ASTM D-1557
	Optimum moisture content	12.5	_	ASTM D-2216
	Gypsum content %	61	_	[11]
	Total sulfate content %	68	0.48	_
	PH value	7.98	_	_

Table 2

Direct shear results

soil		Cohesion c (kN/m ³)		Internal angle of friction ϕ°		Specification
sous	At field unit weight	Dry	Soaked	Dry	Soaked	
Jypse de		15.67	7.5	26.23	13.21	
-	At maximum unit weight	24.58	14.43	31.52	22.5	0
of sand	80		0	3	86	D-308(
density %	60		0	3	32	ASTM
Relative	30		0	2	28	

2.2. Experimental Procedure

50 mm thick layers of soil are put in the box and compacted until the required height is reached. A hand hammer is designed for this purpose contains a circular disc of iron with a diameter of 200 mm and a thickness of 12.5 mm is associated with a metal tube diameter 25 mm, the total hammer weight 5 kg. For each layer, the height of the drop of the hammer to realize the demand density is determined. The soil placed in the box in different cases. The first time only gypseous soil is placed and the second time a layer of sandy soil is placed above the gypseous soil. The thickness of these layers varied depending on the width of the foundation, (B). The process of compaction of sandy soil is made by using an electrical vibrator. Small cans are put at the different places to ensure the achieved relative density. The difference in densities measured at various Table 3

Ultimate bearing capacity for the first stage

locations was found to be less than 1%. The footing is situated at the center of the box.

3. Results and Discussion

3.1. Results of the first stage

These results are listed in Table 3 where the theoretical and experimental values for all tests were obtained. The theoretical values were calculated according to Meyerhof's equation (1963) [13], and were calculated in order to make a comparison with the experimental results.

This stage consists of sandy soil and gypseous soil with field density (without soaking). The results of loading did not show any improvement as shown in Figs. 1-3.

Oninale bearing capa	ieny for the first stage			
Gypseous soil	Sandy soil		Ultimate bearing	ng capacity (kPa)
Density	Relative density	Thickness	Theoretical	Experimental
		50 mm	77.38	84
Pa)	30%	100 mm	10.52	34.12
.5 k		150 mm	10.52	21
(14		50 mm	92.9	147
ity	60%	100 mm	23.06	52.5
lens		150 mm	23.06	31.5
id c		50 mm	109.2	201.07
Fie	80%	100 mm	51	99.75
		150 mm	51	52.5

This stage consists of sandy soil and gypseous soil with field density (without soaking). The results of loading did not show any improvement as shown in Figs. 1-3.

This is because that gypseous soil had a good resistance when it was in a dry state and there was no need to replacement with sandy soil which has small cohesion between its particles.

Fig. 1. Pressure-Settlement relation for gypseous soil with field density (without soaking) before and after replacement with sandy soil with depth B/2

Fig. 2. Pressure-Settlement relation for gypseous soil with field density (without soaking) before and after replacement with sandy soil with depth B

Fig. 3. Pressure-Settlement relation for gypseous soil with field density (without soaking) before and after replacement with sandy soil with depth 3/2 B

3. 2. Results of the second stage

The second stage was sandy soil and gypseous soil with field density (with soaking). The theoretical and experimental results are obtained in the Table 4.

In this stage, the results did not show an improvement in the bearing capacity when the sandy soil was in a loose state. This because that gypseous soil with soaking lost (93.5%) of its resistance by losing the bonding between its particles due to the dissolution of gypsum which consisted of a great percentage of soil and the relative density of sand was small (30%). With a medium state, the bearing capacity after the replacement was approximately equal to the bearing capacity before replacement and still no improvement. With dense state and relative density (80%) the results show an improvement with depth (B/2) this improvement increases with an increase in the depth of the sandy layer reaching to a maximum value (63kPa) with depth (3/2 B). This improvement is due to high relative density (80%) which leads to close particles and that means a few voids, also an increase in the depth of sandy layer keeps the foundation away from the collapsed soil layer. Figs. 4 to 6 show the relationship between the pressure and settlement for this stage.

3.3 Results of the third stage

The third stage was sandy soil and gypseous soil with maximum density (without soaking). Table 5 shows the theoretical and experimental results of bearing capacity.

The results for this stage did not show any improvement as shown in Figs. 7-9, this was due to the fact that gypseous soil with the maximum density in the dry state has great resistance and the resistance of sand is very small if compared with gypseous soil because of small cohesion between sandy particles.

Table 4			
Ultimate bearing	capacity for	the second	stage

Gypseous soil	Sand	dy soil	Ultimate bearing capacity (kPa)	
Density	Relative density	Thickness	Theoretical	Experimental
a)		50 mm	29.83	21
kPa	30%	100 mm	10.52	26.25
1.5		150 mm	10.52	10.2
(12		50 mm	36.56	31.5
ity	60%	100 mm	23	42
sue		150 mm	23	31.5
1 de		50 mm	56	52.5
ield	80%	100 mm	51	60.37
Ľ.		150 mm	51	63

Fig. 4. Pressure-Settlement relation for gypseous soil with field density (with soaking) before and after replacement with sandy soil with depth B/2

Fig. 5. Pressure-Settlement relation for gypseous soil with field density (with soaking) before and after replacement with sandy soil with depth B

Adnan j. Zedan, Heba H. Abbas / Tikrit Journal of Engineering Sciences (2020) 27(1): 30-39.

Fig. 6. Pressure-Settlement relation for gypseous soil with field density (with soaking) before and after replacement with sandy soil with depth 3/2 B

Table 5				
Ultimate bearing	capacity f	for the	third	stage

Gypseous soil	Sandy so	Sandy soil		ng capacity (kPa)
Density	Relative density	Thickness	Theoretical	Experimental
		50 mm	144.3	126
ty	30%	100 mm	10.5	31.5
ensi		150 mm	10.5	23.62
n de kPa		50 mm	181.45	210
nun 75]	60%	100 mm	23	49.87
18.		150 mm	23	31.5
, Ma		50 mm	201.3	316
	80%	100 mm	51	115.5
		150 mm	51	57.75

Fig. 7. Pressure-Settlement relation for gypseous soil with maximum density (without soaking) before and after replacement with sandy soil with depth B/2

Fig. 8 Pressure-Settlement relation for gypseous soil with maximum density (without soaking) before and after

replacement with sandy soil with depth B

Fig. 9. Pressure-Settlement relation for gypseous soil with maximum density (without soaking) before and after replacement with sandy soil with depth 3/2 B

3.4 Results of the final stage

The final stage was sandy soil and gypseous soil with maximum density (with soaking). The results for this stage did not show any improvement as shown in Figs. 10-12. With soaking the gypseous soil lost a high percentage of its bearing capacity but remained larger than the value of the bearing capacity after replacement because the cohesion between the particles of gypseous soil is greater than the cohesion between particles of sandy soil. The theoretical and experimental values for this stage were obtained in Table 6.

4. Conclusions

The main conclusions of the present study could be summarized as follows:

1- After soaking the gypseous soil (compacted with field density) with water till the saturation, this soil

lost 93.5% of its bearing capacity and when the gypseous soil compacted with maximum density and soaking with water, the soil lost 85% of its bearing capacity.

- 2- The process of replacing a layer of gypseous soil (without soaking) with a sandy soil does not improve its bearing capacity due to the resistance that gypseous soil has when it is in a dry or a semi-dry condition. Also the process of replacing a layer of gypseous soil compacted with field density (with soaking) with a sandy soil showed an improvement in the bearing capacity especially when the relative density of sand was (80%) and the thickness was (3/2B mm).
- 3- The process of replacing a layer of gypseous soil compacted to the maximum density (with soaking) with sandy soil does not improve the supporting of the soil.

4- The soaking of gypseous soil affected the bearing capacity of sandy soil and made it decrease

especially when the depth of the sand layer was (B/2).

Fig. 10. Pressure-Settlement relation for gypseous soil with maximum density (with soaking) before and after replacement with sandy soil with depth B/2

Fig. 11. Pressure-Settlement relation for gypseous soil with maximum density (with soaking) before and after replacement with sandy soil with depth B

Table 6	
Ultimate bearing capacity for the fourth	stage

Gypseous soil	Sandy soil		Ultimate bearin	ng capacity (kPa)
Density	Relative density	Thickness	Theoretical	Experimental
75		50 mm	66	42
18.	30%	100 mm	10.52	21
Ŭ		150 mm	10.52	10.5
t _t		50 mm	79.4	63
ensi	60%	100 mm	23	42
a de		150 mm	23	39.37
JINU		50 mm	94	81.37
axii	80%	100 mm	51	57.75
N.		150 mm	51	65.62

Fig. 12. Pressure-Settlement relation for gypseous soil with maximum density (with soaking) before and after replacement with sandy soil with depth 3/2 B

5. References

[1] Das BM. Shallow Foundations, *Bearing Capacity and Settlement*, 2nd Ed., Taylor & Francis Group, 1 p, (2009).

[2] Al-Kaabi FS. "Distribution of the Gypsiferous Soil in Iraq, State Company of Geological Survey and Mining", Report No.3044, Iraq, Baghdad, (2007) In Arabic.

[3] Al-Janabi FH. "Soil Treated with Fuel Oil," M.Sc. Thesis, Building and Construction Department, University of Technology, (2002).

[4] Button SJ. "The Bearing Capacity of Footing on Two-Layer Cohesive Subsoil", Proceedings of the *3rd International Conference on Soil Mechanics and Foundation Engineering*, vol. 1, pp. 332-335, (1953).

[5] Reddy AS. & Srinivasan RJ. "Bearing Capacity of Footings on Layered Clays", *Journal of the Soil Mechanics and Foundations Division*, ASCE, Vol. 96, No. 9, pp. 1951-1965, (1967).

[6] Brown JD. & Meyerhof GG. "Experimental Study of Bearing Capacity in Layered Clays", Proceedings of the *7th International Conference on Soil Mechanics and Foundation Engineering*, Mexico, vol. 2, pp. 45-51, (1969). [7] Meyerhof GG. "Ultimate Bearing Capacity of Footings on Sand Layer Overlying Clay", *Canadian Geotechnical Journal*, Vol.11, No.2, pp. 223-229, (1974).

[8] Abid Awn SH. "Improvement of Gypseous Soil by Pre-Wetting". *Diyala Journal of Engineering Sciences* 2011; 4(1): 71-82.

[9] Ibrahim AN, Schanz T. "Gypseous Soil Improvement by Silicone Oil". *Al-Nahrain Journal for Engineering Sciences* 2017; 20(1): 49-58.

[10] Zedan AJ, Hummadi RA, Hussein SA. "Effect of Adding Mixture of (Concrete Waste and Asphalt Waste) on the Properties of Gypseous Soil". *Tikrit Journal of Engineering Sciences* 2019; 26(1):20-25.

[11] Al-Mufty AA and Nashat IH. "Gypsum Content Determination in Gypseous Soils and Rocks", 3rd *International Jordanian Conference on Mining*, pp. 500-506, (2000).

[12] ASTM (American Society for Testing Materials), (2010), Vol. 04.08 and 04.09, *Soil and Rock*, West Conshohocken, United States.

[13] Bowles JE. *Foundation Analysis and Design*, 5th Edition, McGraw-Hill Book Co. New York, 253 p, (1996).