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Abstract: This paper presents a direct 

algorithm for fast real discrete Fourier 

transform (RDFT) computing, using the 

discrete Fourier transform (DFT) 

conjugate symmetric property to reduce 

redundancies. In RDFT, all the input and 

output signals were real, which differed 

from complex DFT. Therefore, the 

structure of the proposed algorithm 

showed only real-data operations. The 

developed algorithm showed the desired 

properties, such as in-place computation, 

regularity, simplicity, and arithmetic 

operations reduction. The RFFT 

performance was compared with other 

related transforms, such as the fast Hartley 

transform (FHT) for the computation in 

the radix-2 algorithm. It was found that 

FHT showed the best performance in 

terms of arithmetic complexity. 
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 القيمة الحقيقية  خوارزمية جديدة لتحويل فورير ذو

 طه حمود منير  ،صالح خزعل سكينة 

 . العراق  -تكريت  جامعة تكريت / / كلية الهندسة /كهربائيةقسم الهندسة ال

 الخلاصة
فورير لتحويل  السريع  للحساب  خوارزمية  تقديم  تم  البحث،  هذا  الخاصية    في  استغلال  تم  حيث  مباشرة.  بطريقة  الحقيقي  المنفصل 

في   التكرارات.  لتقليل  المقترنة  فورير    RFFTالمتماثلة  تحويل  عن  تختلف  والتي  حقيقة  والاخراج  الادخال  إشارات  جميع  تكون 

للبيانات   يمتلك عمليات  المقترحة  للخوارزمية  المتدفق  البياني  الرسم  فان  لذلك  المعقد،  الفراشة  المنفصل  يوضح هيكل  فقط.  الحقيقية 

مثل   المرغوبة  الخصائص  المقترحة  الحسابيةللخوارزمية  التعقيدات  تقليل عدد  مع  الهيكل  في  والانتظام  الموضعي  تمت  الحساب   .

ووجد أنهُ يتمتع بأداء أفضل من   2-للحساب في الجذر  FHTمماثلة مثل تحويل هارتلي السريع    أخرى  بأداء تحويلات  RFFTمقارنة  

 ناحية التعقيد الحسابي.

 ، التقسيم الزمني، الخوارزمية السريعة. RDFTالقيمة الحقيقية، تحويل فورير السريع،  الكلمات الدالة:

1.INTRODUCTION
The discrete Fourier transform (DFT) is an 
important tool in electrical engineering, 
especially in digital signal processing, high-
performance computation, and 
communication [1]. The DFT is used to analyze 
nonperiodic signals to produce a frequency 
spectrum of those signals. It converts a 
sequence in the time domain to its frequency 
domain components, whereas the inverse 
discrete Fourier transform (IDFT) retrieves the 
original signal. The Fast Fourier Transform 
(FFT) is an effective algorithm for calculating 
DFT, and it represents a fast approach that can 
achieve the same result as the DFT with fewer 
operations [2]. In FFT algorithms, there are 
two approaches: Decimation-in-Time (DIT) 
and Decimation-in-Frequency (DIF). In DIT, 
the input data x(n) of length N can be 
separated into two sequences, x1(n) and x2(n). 
They correspond to the input x(n)’s even-
indexed and odd-indexed samples, 
respectively. While in DIF, the length N is 
divided into two parts: the first part contains 
the first half (N/2) data, and the second part 
contains the other half of the sequence x(n). 
These algorithms can be employed for 
computing the DFT for lengths with integer 
powers of two [3]. The fast RDFT algorithms 
development reflects their importance as they 
have been used in many applications, such as 
radar signals processing [4], spectrum sensing 
[5], artificial neural networks [6], nonlinear 
matched filtering [7], and analyzing the signal 
of biomedical of data [8]. The RDFT has all the 
properties of the DFT. In addition, it deals 
with real signals, as most natural applications 
utilize real signals [9, 10]. The conventional 
real-valued FFT used two different ways to 
calculate the real data. The first method 
converts real data into complex data by adding 
zeros to the imaginary part; the second 
method depends on transferring the real 
sequence to a complex sequence by dividing 
the length N by two. In this case, the even and 
odd parts of the input sequence represent the 
real and imaginary parts sequentially. More 
calculations are required to find the real input 

DFT from the complex sequence DFT. Despite 
the simplicity and ease of the DFT method in 
real-data calculations, it requires many 
operations. However, there are many 
algorithms to compute the real signal DFT [11-
14]. When the DFT deals with a real signal, the 
appearance of conjugate symmetry properties 
in the output is noticeable, which means there 
is a redundancy in the calculations. Utilizing 
the conjugate symmetry of the DFT, the 
operations can be reduced by almost half [15, 
16]. It is found that N/2 - 1 are redundant 
calculations using the DFT. The RDFT 
utilization reduces the time required to 
calculate the arithmetic operations and the 
memory storage by half. Later, a brief 
literature is introduced to compute RFFT 
algorithms [17-21]. The main objective of this 
paper is to develop a new algorithm for 
computing the real-valued of the fast Fourier 
transform and compare the arithmetic 
complexity of RFFT with the fast Hartley 
transform. Section 2 lists previous works on 
RDFT. Section 3 reviews the real discrete 
transforms. The proposed RFFT on decimation 
in time algorithm is derived in Section 4. 
Section 5 presents the complex arithmetic of 
the developed algorithm. Finally, the 
conclusion is given in Section 6. 

2.PREVIOUS STUDIES 
Various RFFT computation algorithms have 
been demonstrated in the past. Most of these 
studies were interested in the RFFT 
implementation in-place and pipelined. This 
section presents some of the literature on 
RFFT. Lao and Parhi [22] presented a real-
valued algorithm (RFFT) using the canonic 
property to design RFFT, which was suitable. 
The canonic RFFT approach required the least 
number of butterfly operations, and it 
increased the regularity of architectures, which 
decreased the hardware complexity. Yin et al. 
[23] found a new algorithm for a pair of 
parallel pipelined radix-2 RFFT implemented 
depending on real datapaths, which differs 
from hybrid datapaths and fully utilized 
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hardware resources. Garrido et al. [15] 
designed a pipelined architecture to compute 
the real signal of a fast Fourier transform 
where the input signal deals serially. The 
proposed architecture was mentioned as a 
real-valued serial commutator (RSC) FFT. This 
approach provided 50% hardware 
consumption and gave high exploitation of 
butterflies. Kumar et al. [24] discussed an 
efficient algorithm for FFT called quick Fourier 
transform (QFT) by taking advantage of the 
symmetric properties of the DFT. The QFT 
algorithm had an interesting structure related 
to the discrete Cosine transform (DCT) and 
discrete Sine transform (DST). It calculated 
the DFT using DCT and DST separately and 
worked effectively for the DFT on real data. 
This algorithm represented an indirect method 
to compute the DFT for real data. Park and 
Jeon [25] modified the real serial commutator 
(mRSC) architecture for FRFT, reducing 
processing delay and device complexity. The 
mRSC designs could not enable real-valued 
IFFT (RIFFT) in their original structure. 
Instead, they only accepted real-valued inputs 
and processed real and imaginary components 
separately in each stage. The suggested 
architecture showed the least hardware 
complexity and implementation cost compared 
with pipelined FFT architectures for serial 
real-valued. Majorkowska-Mech and Cariow 
[26] presented a real-valued algorithm for 
computing FFT of small length N from (3 to 9) 
and explained the data flow graph of each 
length. Their strategy of the algorithms was 
expressed in matrix-vector notation, where the 
matrices of RDFT were factorized, and the 
factors were sparse matrices. The number of 
arithmetic operations was decreased by this 
factoring. Eleftheriadis and Karakonstantis 
[27] proposed a new architecture for FFT real-
valued applications that would save energy 
using the DFT properties for odd conjugate 
symmetric. The architecture approach 
represented decimate in time, where the input 
was in time with bit reverse order. When 
processing two inputs simultaneously, it 
reduces the memory cells number. Therefore, 
it was possible to double the throughput with 
only a slight increase in area overhead. 

3.REAL DISCRETE TRANSFORMS 
3.1.Real Discrete Fourier Transform 
(RDFT) 
Discrete Fourier Transform (DFT) for length N 
of sequence x(n) is defined as [24]: 

𝑋(𝑘) = ∑ 𝑥(𝑛) 𝑊𝑁
𝑛𝑘𝑁−1

𝑛=0
 k=0,1,2,…,N-1 (1) 

Where 𝑊𝑁 =  𝑒𝑗2𝜋/𝑁 
X(k) and x(n) in DFT represent complex 
signals (both have phase and amplitude). The 
DFT is based on sine waves [28]. In the case of 
RDFT, all the inputs of sequence x(n) are real, 
making the output X(k) conjugate symmetric. 

𝑋(𝑁 − 𝐾) = 𝑋∗(𝐾) 1 ≤ 𝑘 ≤ 𝑁/2 − 1 (2) 

Where X (0) and X(N/2) are real output 
signals, and other outputs are conjugate 
symmetric. By taking advantage of this feature, 
all duplicates can be removed. As a result, an 
N-point RFFT only needs to compute N/2+1 
output. The forward RDFT can be defined as 
[26]: 

𝑋(𝑘) = ∑ x(n) cos (
2𝜋𝑛𝑘

𝑁
+ 𝜃(𝑘))

𝑁−1

𝑛=0

 (3) 

Where 

𝜃(𝑘) = {

0,   0 ≤ 𝑘 ≤ 𝑁/2
𝜋

2
  

𝑁

2
< 𝑘 ≤ 𝑁 − 1 

 (4) 

The inverse RDFT is defined as: 

x(n) =
2

N
∑ X(k) v(n) cos (

2𝜋𝑛𝑘

𝑁
+

𝑁−1

𝑘=0

𝜃(𝑘))  

(5) 

Where 

𝑣(𝑛) = {
1

2
            n = 0, 𝑁/2               

1,         otherwise                   
  (6) 

3.2.Discrete Hartley Transform (DHT) 
The discrete Hartley transform (HT) 
represents an orthogonal transformation 
nearly identical to the Fourier transform in 
many ways. The DHT is based on the DFT, and 
they have a close relationship. The DHT has 
features similar to those of the DFT. FHT is 
one type of real transform popularly utilized 
with real signals. It depends on the same basic 
functions as the DFT. However, the DHT 
employs just real sinusoids and cosines rather 
than complex exponentials. The formula for 
the DHT pair is expressed as [29]: 

𝑋(𝑘) = ∑ 𝑥(𝑛) 𝑐𝑎𝑠 (
2𝜋𝑛𝑘

𝑁
)

𝑁−1

𝑛=0
 

k=0,1,2,…,N-1  

(7) 

Where 𝑐𝑎𝑠 (
2𝜋𝑛𝑘

𝑁
) = sin (

2𝜋𝑛𝑘

𝑁
) + cos (

2𝜋𝑛𝑘

𝑁
). 

Observe that the only difference between the 
HT and the DFT is the absence of the"-j," 
meaning that the DHT corresponds to directly 
subtracting the imaginary term from the real 
term of the DFT of a real-valued sequence. 
From Eqs. (3) and (7), the RDFT is simpler to 
compute the real signals DFT than the DHT. It 
has been shown that the RFFT and the HT are 
closely related. Also, each RFFT algorithm has 
an equivalent algorithm for Hartley and vice 
versa. The Hartley transform has the same 
forward and inverse, which makes it useful on 
processors with limited memory [14]. 

4.THE PROPOSED ALGORITHM 
In RDFT, it is assumed that the length N is 2t, 
i.e., t is an integer. From Eq. (3), the length is 
separated into even and odd sequences, so it is 
possible to write. 

https://tj-es.com/
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𝑋𝑅(𝑘) = 𝑋𝑒(𝑘) + 𝑋𝑜(𝑘) 
(8) 

𝑋𝑒(𝑘) = ∑ 𝑥(2𝑛) cos (
2𝜋𝑛𝑘

𝑁/2
+

𝑁/2−1

𝑛=0

𝜃(𝑘))  (9) 

Eq. (9) represents the RDFT, so  
𝑋𝑒(𝑘) = 𝑋2𝑛(𝑘) (10) 

 

𝑋𝑜(𝑘) = ∑ 𝑥(2𝑛 +

𝑁/2−1

𝑛=0

1) cos (
2𝜋𝑘(𝑛+

1

2
)

𝑁/2
+ 𝜃(𝑘))  (11) 

𝑋𝑜(𝑘) = ∑ 𝑥(2𝑛 +

𝑁/2−1

𝑛=0

1) cos {(
2𝜋𝑛𝑘

𝑁/2
+ 𝜃(𝑘)) +

2𝜋𝑘

𝑁
}  (12) 

Using the following trigonometric identities: 

cos(𝐴 + 𝐵) =  cos 𝐴 cos 𝐵
− sin 𝐴 sin 𝐵 

(13) 

It can be obtained that: 

𝑋𝑂 = ∑ 𝑥(2𝑛 +

𝑁/2−1

𝑛=0

1) cos
𝜋𝑘

𝑁
cos (

2𝜋𝑛𝑘

𝑁/2
+ 𝜃(𝑘)) −

∑ 𝑥(2𝑛 + 1) sin
𝜋𝑘

𝑁
sin (

2𝜋𝑛𝑘

𝑁/2
+

𝑁/2−1

𝑛=0

𝜃(𝑘))         (14) 

From the RDFT definition, the first 
summation can be written as: 

𝑋𝑜(𝑘) = 𝑋2𝑛+1(𝑘) cos
𝜋𝑘

𝑁
 −

sin
𝜋𝑘

𝑁
 ∑ 𝑥(2𝑛 + 1) sin (

2𝜋𝑛𝑘

𝑁/2
+

𝑁/2−1

𝑛=0

𝜃(𝑘))        (15) 

To simplify the second summation, using the 
definition of 𝜃(𝑘) given in Eq. (4): 

𝜃(𝑘) = {
0             0 ≤ 𝑘 ≤ 𝑁/2
𝜋

2
    𝑁/2 < 𝑘 ≤ 𝑁 − 1

  (16) 

sin (
2𝜋𝑛𝑘

𝑁/2
+ 𝜃(𝑘)) =

{
sin

2𝜋𝑛𝑘

𝑁/2
          0 ≤ 𝑘 ≤ 𝑁/2

cos
2𝜋𝑛𝑘

𝑁/2
      𝑁/2 < 𝑘 ≤ 𝑁 − 1

  
(17) 

And 

cos (
2𝜋𝑛𝑘

𝑁/2
+ 𝜃(𝑘)) =

{
cos

2𝜋𝑛𝑘

𝑁/2
          0 ≤ 𝑘 ≤ 𝑁/2

− sin
2𝜋𝑛𝑘

𝑁/2
      𝑁/2 < 𝑘 ≤ 𝑁 − 1

  
(18) 

From these relationships, the second 
summation of Eq. (14) can be converted to: 

∑ 𝑥(2𝑛 + 1) sin (
2𝜋𝑛𝑘

𝑁/2
+

𝑁/2−1

𝑛=0

𝜃(𝑘)) = ∑ 𝑥(−(2𝑛 +

𝑁/2−1

𝑛=0

1) cos (
2𝜋𝑛𝑘

𝑁/2
+ 𝜃(𝑘))  (19) 

Using the DFT periodicity property 

−𝑋(𝑘) = 𝑋(𝑁 − 𝑘) (20) 

yields to 

𝑋𝑜(𝑘) = 𝑋2𝑛+1(𝑘)cos
𝜋𝑘

𝑁
 −

𝑋2𝑛+1(𝑁/2 − 𝑘) sin
𝜋𝑘

𝑁
  (21) 

Therefore, the first equation of the proposed 
algorithm is: 

𝑋𝑅(𝑘) = 𝑋2𝑛(𝑘) + 𝑋2𝑛+1(𝑘)cos
𝜋𝑘

𝑁
 −

𝑋2𝑛+1(𝑁/2 − 𝑘) sin
𝜋𝑘

𝑁
   (22) 

In the same manner, the derivation of the DIT-
RFFT algorithm found for other 
decompositions are: 

𝑋𝑅 (
𝑁

2
− 𝑘) = 𝑋2𝑛(𝑘) −

𝑋2𝑛+1(𝑘)cos
𝜋𝑘

𝑁
+ 𝑋2𝑛+1(𝑁/2 − 𝑘) sin

𝜋𝑘

𝑁
     (23) 

𝑋𝑅 (
𝑁

2
+ 𝑘) = −𝑋2𝑛(𝑁/2 − 𝑘) +

𝑋2𝑛+1(𝑘)sin
𝜋𝑘

𝑁
+ 𝑋2𝑛+1(𝑁/2 − 𝑘) cos

𝜋𝑘

𝑁
  (24) 

𝑋𝑅(𝑁 − 𝑘) = 𝑋2𝑛(𝑁/2 − 𝑘) +

𝑋2𝑛+1(𝑘)sin
𝜋𝑘

𝑁
+ 𝑋2𝑛+1(𝑁/2 − 𝑘) cos

𝜋𝑘

𝑁
  (25) 

The resulting butterfly of the proposed 
algorithm is shown in Fig. 1. 

 
Fig. 1 Real-Valued Fast Fourier Transform 

(RFFT) Butterfly. 

•  

•  

•  

•  

x(n) x(n)

x(N/2-n)

x(n+N/2)

x(N-n) x(N-n)

x(N/2-n)

x(n+N/2)
C1

-S1S1

C1
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The strategy followed by the proposed 
algorithm is shown in Fig. 2. 

 
Fig. 2 The Flowchart of the Proposed 

Algorithm (RFFT). 

5.ARITHMETIC COMPLEXITY 
In this section, the proposed algorithm is 
analyzed by calculating the number of 
operations. The real multiplication RM and real 
additions RA were computed from a single flow 
graph (SFG) in Fig.3. Generally, the developed 
algorithm required (log2 𝑁) stages of butterfly 
computation. In the first stage, there were N 
additions, followed by N/2 additions in the 
second stage, and no multiplication in these 
stages. Each butterfly in all stages had two 
reductions, except in the first stage, where the 
reductions in the last stage occurred at points 
N/4 and 3N/4. The complexity can be 
calculated as: 

RM (N) = N (log2 𝑁 − 2) − (𝑁 − 4) (26) 

RA (N) = 
3𝑁

2
(𝑙𝑜𝑔2 𝑁 − 2) +

3𝑁

2
− (𝑁 − 4) (27) 

Simplification of Eq. (26) and Eq. (27) yields 

RM (N) = N 𝑙𝑜𝑔2 𝑁 − 3𝑁 + 4 (28) 

RA (N) = 
3𝑁

2
𝑙𝑜𝑔2 𝑁 −

5𝑁

2
+ 4 (29) 

Table 1 compares the proposed algorithm 
RFFT with FHT in terms of computational 
complexity. The number of multiplications 

 and the number of additions  

for FHT [30] are given as: 

HM (N) = N 𝑙𝑜𝑔2 𝑁 − 3𝑁 + 4 (30) 

HA (N) = (3𝑁 𝑙𝑜𝑔2 𝑁 − 3𝑁 + 4)/2 (31) 

The RFFT algorithm complexity was calculated 
using Eqs. (28) and (29). This comparison 
shows that FHT requires (N-2) additions more 
than the RFFT algorithm. The proposed RFFT 
algorithm uses the standard two 
multiplications and four additions scheme, 
and it is based on the single-butterfly structure 
that requires a simple hardware or software 
structure. 

Table 1 Comparison between RFFT and FHT. 

Transform length(N) 
Radix-2 RFFT Radix-2 FHT 

Mults. Adds. Mult+Add Mults. Adds Mult+Add 

8 4 20 24 4 26 30 

16 20 60 80 20 74 94 

32 68 164 232 68 194 262 

64 196 420 616 196 482 678 

128 516 1028 1544 516 1154 1670 

256 1284 2436 3720 1284 2690 3974 

512 3076 5636 8712 3076 6146 9222 

1024 7172 12804 19976 7172 13826 20998 

Real sequence x(n)

Arrange x(n) 
in bit reverse 

order

Calculate No. of 
stages for Length N

Calculate the 
 st1operations in 

stage

Twiddle factor (Ci & 
Si) are calculated 

Determine the 
operations in other 

stages

Arrange X(k) 
in order

Real sequence X(k)

( )MH N ( )AH N

https://tj-es.com/
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Fig. 3 Radix-2 RFFT Signal Flow Diagram when N=16, where 𝑠𝑖 = sin
2𝜋𝑖

𝑁
 and 𝑐𝑖 = cos

2𝜋𝑖

𝑁
, 

Respectively. 

6.CONCLUSION 
An efficient RFFT decimation-in-time 
algorithm was proposed. By exploiting the 
property of conjugate symmetry for the real 
signal of the DFT, all duplicates and 
symmetries were eliminated. The arithmetic 
complexity of the suggested algorithm was 
calculated and carefully checked. It was 
compared to the number of operations using 
the FHT approach. This comparison showed 
that the proposed RFFT radix-2 algorithm 
outperformed the number of arithmetic 
operations and structural complexities 
compared to FHT radix-2 algorithms. 
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