Ataallah Hussain Jassim ¹
M.M. Rahman ²
Khalaf Ibrahim Hamada ¹
M. Ishak ²

Tahseen Ahmad Tahseen ¹,⁎

1 Department of Mechanical Engineering
College of Engineering
Tikrit University
Tikrit, Iraq
2 Faculty of Mechanical Engineering
Universiti Malaysia Pahang
26600 Pekan
Pahang, Malaysia

Keywords:
In-line flat tube
finite volume technique
CFD
modeling
friction factor
artificial neural networks

A R T I C L E I N F O
Article history:
Received 14 November 2017
Accepted 06 March 2018
Available online 17 June 2018

Hybrid CFD-ANN Scheme for Air Flow and Heat Transfer Across In-Line Flat Tubes Array

A B S T R A C T
Flat tubes are vital components of various technical applications including modern heat exchangers, thermal power plants, and automotive radiators. This paper presents the hybridization of computational fluid dynamic (CFD) and artificial neural network (ANN) approach to predict the thermal-hydraulic characteristics of in-line flat tubes heat exchangers. A 2D steady state and an incompressible laminar flow in a tube configuration are considered for numerical analysis. Finite volume technique and body-fitted coordinate system are used to solve the Navier–Stokes and energy equations. The Reynolds number based on outer hydraulic diameter varies between 10 and 320. Heat transfer coefficient and friction are analyzed for various tube configurations including transverse and longitudinal pitches. The numerical results from CFD analysis are used in the training and testing of the ANN for predicting thermal characteristics and friction factors. The predicted results revealed a satisfactory performance, with the mean relative error ranging from 0.39% to 5.57%, the root-mean-square error ranging from 0.00367 to 0.219, and the correlation coefficient (R²) ranging from 99.505% to 99.947%. Thus, this study verifies the effectiveness of using ANN in predicting the performance of thermal-hydraulic systems in engineering applications such as heat transfer modeling and fluid flow in tube bank heat exchangers.

© 2018 TJES, College of Engineering, Tikrit University
DOI: http://dx.doi.org/10.25130/tjes.25.2.08

1. INTRODUCTION

The fluid flow and heat transfer in tube banks demonstrate the real-life applications of various industrially significant processes. Tube bundles are widely employed in cross-flow heat exchangers, and their design is based on the empirical correlations of heat transfer and pressure drop. Cross-flow heat exchangers with tube banks are essential to numerous thermal and chemical engineering processes [1–4]. Flat tube designs have been recently introduced for modern heat exchanger applications such as automotive radiators. Unlike circular...
Nomenclature

c_p specific heat capacity of fluid, (J/kg K)
D_h hydraulic diameter of tube, (m)
d_L longitudinal diameter of tube, (m)
d_T transverse diameter of tube, (m)
G_1, G_2 contravariant velocity components
\(\nabla \) Jacobian of the transformation
k thermal conductivity of fluid, (W/m K)
N_L number of rows in flow direction
p pressure, (Pa)
P_1 longitudinal distance, (m)
P_2 transverse distance, (m)
P_L longitudinal pitch
P_T transverse pitch
S source term
T temperature, (°C)
u, v velocity components, (m/s)
U_1, U_2 dimensionless velocity
x, y Cartesian coordinates, (m)

Dimensionless groups

f friction factor
j Colburn factor
Nu overall Nusselt number
Re Reynolds number

Greek symbols

\(\mu \) dynamic viscosity, (kg/m s)
\(\rho \) density, (kg/m^3)
\(\alpha, \beta, \gamma \) coefficients of transformation

Subscripts

* dimensionless quantity
N numerical data
out outlet
w tube wall

Artificial neural networks (ANN) are used in numerous engineering applications because these tools provide excellent and highly reasonable solutions [8]. Ermis et al. [9] used a feed-forward back-propagation ANN to conduct numerical and experimental analysis of the heat transfer resulting from the phase change process in finned tubes. The experimental study yielded a mean relative error of 5.58%, whereas that of the numerical model is 14.99%. Fadare and Fatona [10] studied ANN in modeling staggered multi-row, multi-column in cross-flow, tube-to-tube heat exchangers, as well as the experimental data for air flow over a bundle of tubes. Results demonstrated that the mean absolute relative errors are less than 4% and 1% for the testing and training data sets, respectively. Islamoglu and Kurt [11] used an ANN to model the predicted heat transfer in corrugated channels. The mean absolute error between the experimental results and the ANN approach was less than 4%. The developed ANN models for predicting heat transfer coefficient and friction factor in helically coiled tubes used the empirical data for the prediction, which is then compared with previously published experimental correlations [12,13].

This study focuses on the applicability of ANN for the analyses of heat transfer and friction factor in in-line flat tube banks. Such analyses elucidate whether the use of in-line flat tube banks in the design of heat exchangers promotes heat transfer. CFD simulation results are compared with ANN model results, and various geometrical parameters on heat transfer coefficient and friction factor are discussed.

2. CFD SIMULATION AND FORMULATION

Four horizontal flat tubes isothermal heated in the row at the direction of the external flow. A flat tube with two outside diameters, namely, transverse \(d_h \) and longitudinal \(d_L \), as well as the surface temperature of tube \(T_s \) placed in the velocity \(u_\infty \) and the uniform inlet free stream of temperature \(T_\infty \) in the in-line arrangement are used. The three longitudinal pitch-to-outside small diameter (transverse) ratio, \(P_L = P_t/d_L \), are 3.0, 4.0, and 6.0, and the four transverse pitch-to-outside small diameter ratio, \(P_T = P_t/d_T \), are 1.5, 2.5, 3.5, and 4.5. A sufficiently long flat tube is required to neglect the end effect of the tube. Therefore, flow field is assumed to be two-dimensional. The tube configuration and flow field calculation for the in-line flat tube banks are presented in Fig. 1(a).

The governing equations are transformed into dimensionless forms upon incorporating the following non-dimensional variables.

\[
(x^*, y^*) = \frac{(x, y)}{D_h}, \quad p^* = \frac{p}{\rho \times (u_\infty)^2}, \quad (U_1, U_2) = \frac{(u, v)}{u_\infty}, \quad T^* = \frac{T - T_\infty}{T_s - T_\infty}, \quad Re_{D_h} = \frac{u_\infty \times D_h}{\nu}, \quad Pr = \frac{\mu \times c_p}{k}
\]

The outer side hydraulic diameter of the flat tube can be written as follows:

\[
D_h = \frac{4 \times \left(\frac{\pi}{4} \times d_T^2 + (d_L - d_T) \times d_T \right)}{\pi \times d_t + 2(d_L - d_T)}
\]

where \((x, y)\) are the Cartesian coordinates, \(m\); \(\rho\) is the air density, kg/m^3; \(p\) is pressure, N/m^2; \(u_\infty\) is the air inlet velocity, m/s; \((u, v)\) is the velocity components of fluid, m/s; \(T\) is the fluid temperature, °C; \(T_\infty\) is the inlet free stream temperature, °C; \(T_s\) is the surface temperature of tube, °C; \(D_h\) is the outside hydraulic diameter of the tube, m; \(d_t\) is the outside longitudinal diameter of tubes, m; \(d_T\) is the outside transverse diameter, m; \(\mu\) is the air dynamic viscosity, kg/(m s); \(c_p\) is the air specific heat, J/(kg K); and \(k\) is the air thermal conductivity, W/(m K).

The following assumptions are made in developing the model: (i) the physical properties of air flow are constant; (ii) the air flow is incompressible and laminar flow; and (iii) steady-state flow and heat transfer. The governing equations for 2D continuity and Navier–Stokes for momentum and energy can be written as follows [14]:

The continuity equation

\[
\nabla \cdot \mathbf{v} = 0
\]

Momentum (Navier-Stokes) equation

\[
\rho \nabla (\mathbf{v} \cdot \mathbf{v}) = -\nabla P + \mu \nabla^2 \mathbf{v}
\]

Energy equation

\[
\rho \nabla T = \alpha \nabla^2 T
\]
\[\nabla (\rho v) = \frac{k}{\rho c_p} \nabla (\nabla T) \] \hspace{1cm} (5)

In Eqs. (3) and (4), \(v \) is the velocity vector \((u, v)\).

The physical system considered in this study is illustrated in Fig. 1(a). The boundary conditions used for the solution domain are uniform inlet velocity, fully developed outflow, and combined symmetry and no-slip tube surfaces at the bottom and top boundaries. To complete the formulation, boundary conditions are determined to simplify the 2D solution domain as presented in Fig. 1(a). The boundary conditions can be summarized as follows:

The entrance domain:
\[U_1 = 1, \quad U_2 = T^* = 0 \]

Symmetric lines:
\[\partial U_1/\partial y^* = 0, \quad U_2 = 0, \quad \partial T^*/\partial y^* = 0 \]

The exit of the domain:
\[\partial U_1/\partial x^* = 0, \quad \partial U_2/\partial x^* = 0, \quad \partial T^*/\partial x^* = 0 \]

The surface of tubes:
\[U_1 = 0, \quad U_2 = 0, \quad T^* = 1 \]

The set of conservation Eqs. (3) to (5) can be generally written in Cartesian coordinates as Eq. (6).
\[\frac{\partial (U_1 \phi)}{\partial x^*} + \frac{\partial (U_2 \phi)}{\partial y^*} = -\frac{\partial p}{\partial x^*} \left(\Gamma \frac{\partial \phi}{\partial x^*} + \frac{\partial \phi}{\partial y^*} \right) + \frac{\partial}{\partial y^*} \left(\Gamma \frac{\partial \phi}{\partial y^*} + \frac{\partial \phi}{\partial x^*} \right) + S_\phi \] \hspace{1cm} (6)

The final form of the transformed equation can be written as Eq. (7):
\[\frac{\partial}{\partial \xi^*} (\phi G_1) + \frac{\partial}{\partial \eta^*} (\phi G_2) = \frac{\partial}{\partial \xi^*} \left[\Gamma \left(\alpha \frac{\partial \phi}{\partial \xi^*} + \gamma \frac{\partial \phi}{\partial \eta^*} \right) \right] + \frac{\partial}{\partial \eta^*} \left[\Gamma \left(\beta \frac{\partial \phi}{\partial \eta^*} + \gamma \frac{\partial \phi}{\partial \xi^*} \right) \right] + J \times S_\phi \] \hspace{1cm} (7)

This study determines the overall Nusselt number, the Colburn \(j \)-factor, the friction factor or the resulting air flow, and the temperature fields, which are expected to represent the total pressure drop for the flat tube bank system.

The overall Nusselt number, \((Nu)\), is defined as follows:
\[Nu = \frac{h \times D_h}{k} \] \hspace{1cm} (9)

The calculation of the Colburn \(j \)-factor is presented through the following non-dimensional parameter:
\[j = \frac{Nu}{Re_{D_h} \times Pr^{1/3}} \] \hspace{1cm} (10)

The friction factor in the expiration is calculated as follows [17]:

Fig. 1. In-line flat tube bank (a) tube arrangement and computational domain, and (b) schematic of computational grid systems generated by the body-fitted coordinates.
\[f = \frac{(P_{\text{in}} - P_{\text{out}})}{2\rho \times (u_{\text{max}})^2 \times N_L} \]

(11)

where \(N_L \) is the number of transverse rows, which is regarded as 4 in this study.

The mass velocity at minimum flow area can be calculated by Eq. (12) [18]:

\[u_{\text{max}} = u_{\infty} \times \frac{P_T}{(P_T - 1)} \]

(12)

2.1. Numerical Methods

The governing equations are solved numerically with the use of FORTRAN 95 (FTN95). The computer code solved the equation of continuity, momentum, and energy, which are discretized by a finite-volume technique. The technique is based on a non-orthogonal coordinate system with Cartesian velocity components and a non-staggered (collocated) grid [19] with the SIMPLE algorithm [20]. The convergence of the steady state is monitored using the determined iterator-to-iterator variations of a field variable that is normalized by its domain. The normalized maximum root-mean-square (RMS) is defined as follows:

\[\text{RMS} = \frac{|X_{\text{new}} - X_{\text{old}}|}{(X_{\text{max}} - X_{\text{min}})} \]

(13)

where \(X \) are \(U_1, U_2, p^*, \) and \(T^* \).

The RMS values are checked in every nodal location, and the determined convergences of the upper values of RMS are typically less than \(1 \times 10^{-3} \).

2.2. Code Validation and Grid Independent Testing

Code validation is an essential aspect of numerical investigation. This section aims to address the code validation issue. The validation with FORTRAN95 (FTN95) code resolved numerous test problems and predictions, which were compared with the code developed from exact solutions, experimental data, or standard problems from previous studies. The numerical model was validated with the publication of certain standard problems. Comparison of the results of this study and Bahaidarah's research [21] are illustrated in Table 1. The results presented in Table 1 include the numerical forecasts of heat transfer by the code, which completely match the numerical forecasts by Bahaidarah [21]. The maximum deviation in the overall Nusselt number is 3.034% or less.

Grid independence test was conducted by modifying the grid numbers with various expansion and contraction factors. The general mesh testing matches the independent solution of the grid. A study was conducted on grid independence test; \(P_L = 4.0 \) and \(P_T = 2.5 \) at \(\text{Re}_{D_h} = 160 \) in the domain, and the overall Nusselt number and the friction factor are increased. The study indicated that 601 nodes (along the \(x \)-direction) by 21 nodes (along the \(y \)-direction) cater to the best results, whereas increases in the number of grids do not affect the result. Table 2 presents the summary of the independent results of the grid. Therefore, to minimize the error and optimum uses of CPU resources, the ideal shape of the grid is 601 \(\times \) 21.

Table 1

Comparison of overall Nusselt number between the present simulation results and Bahaidarah et al. [21].

<table>
<thead>
<tr>
<th>Re(_{D_h})</th>
<th>HEM</th>
<th>Present simulation</th>
<th>Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2nd HEM</td>
<td>9.228</td>
<td>9.508</td>
</tr>
<tr>
<td>200</td>
<td>3rd HEM</td>
<td>9.229</td>
<td>9.207</td>
</tr>
<tr>
<td></td>
<td>4th HEM</td>
<td>9.229</td>
<td>9.157</td>
</tr>
</tbody>
</table>

Table 2

Typical scheme for system models (a) input and output, and (b) Configuration on a 3-5-3 the neural networks.
output layer. Only the tap weights between the hidden layer and the output layer are modified during training. Each hidden layer neuron represents a basis function of the output space with respect to a particular center in the input space. The second layer is the hidden layer which is composed of nonlinear units that are connected directly to all of the nodes in the input layer. It is of high enough dimensions which serves a different purpose from that in a multilayer perceptron. Each hidden unit takes its input from all the nodes at the components of the input layer and the hidden units contain a basis function, which has the parameters center and width. The transformation from the input space to the hidden unit space is nonlinear, whereas the transformation to the hidden unit space to the output space is linear. The neural networks were determined with the use of MATLAB program, and all of the tests were implemented in a computer. Activating the error function in this study is a function of the logistic sigmoid and the standard total of the squared error function.

The data that was numerically evaluated in this study were normalized to obtain the values by using the following Eq. (14):

\[
\left(\frac{\text{Actual} - \text{Minimum}}{\text{Maximum} - \text{Minimum}} \right) \times (\text{High data} - \text{Low data}) + \text{Low data}
\]

where the maximum and minimum are the maximum and minimum data values, respectively, such that, the low is the minimum normalized data value = 0.1, and the high is the maximum normalized data value = 0.9 [20]. In general, the proposed correlations formula can be assessed statistically by measuring the coefficient of determination, \(R^2 \), as pointed out by Kvalseth [25]. The \(R^2 \)-value is mostly computed with the use of data points. The \(R^2 \)-value is the standard of the appropriateness of the regression model designed for the fitted test data [26]. \(R^2 = 1 \) refers to the perfect correlation when all of the residuals (the difference between the estimated and the actual data values at each test point) are equal to zero.

The relative error (Er) for variable (\(\psi \)), and the mean relative error (M Er) between the empirical and predicted data is estimated by Eq. (15) [27]:

\[
\begin{align*}
\text{Er}(\%) &= \left| \frac{\psi_{\text{pred}} - \psi_{\text{emp}}}{\psi_{\text{emp}}} \right| \times 100 \\
\text{M Er}(\%) &= \frac{1}{n} \sum_{i=1}^{n} \text{Er}(\%)
\end{align*}
\]

The root mean square error (RMSE) can be evaluated by Eq. (16) [28]:

\[
\text{RMSE} = \left[\frac{1}{n} \sum_{i=1}^{n} (\psi_{\text{pred}} - \psi_{\text{emp}})^2 \right]^{1/2}
\]

The correlation coefficient (\(R^2 \)) is defined by [29]:

\[
R^2 = 1 - \frac{\sum_{i=1}^{n} (\psi_{\text{pred}} - \psi_{\text{emp}})^2}{\sum_{i=1}^{n} (\psi_{\text{emp}})^2}
\]

where (\(N \)) is the numerical data, (\(P \)) is the predicted result, and (\(n \)) is the number of numerical data.

4. RESULTS AND DISCUSSION

Numerical evaluations were conducted to verify the results of the ANN model. Sixty numerical simulation data were utilized to produce the ANN model. To improve the proposed model, data from 46 cases (approximately 76.67%) were used for training, and the remaining 14 cases were used for the testing performance (approximately 23.33%) to evaluate the ANN model. The original data (CFD) that were employed to produce the ANN model are listed in Table 3.

Results of the developed ANN model with the training data are shown in Fig. 3. The figure shows the overall Nusselt number, Colburn \(j \)-factor, and friction factor. An excellent agreement exists between the output data from the ANN model and the data obtained from the simulations; the maximum relative error is approximately ±3.84%, ±5.87%, and ±13.87%, and the mean relative error is approximately 1.43%, 2.43%, and 5.57%, for the Nusselt number, Colburn \(j \)-factor, and friction factors, respectively. For the overall Nusselt number, the best agreement between the ANN predictions and the CFD simulation results (\(R^2 = 99.916\%) are provided in Fig. 3(a). The \(j \)-factor predictions of ANN that were in excellent agreement with the numerical simulation results (\(R^2 = 99.947\%) are depicted in Fig. 3(b). The predictions of the ANN for the friction factor that were in best agreement with the CFD simulation results (\(R^2 = 99.914\%) are indicated in Fig. 3(c), which is a powerful indication of excellent data fitting. Performance through the ANN models is assessed on the basis of the statistical evaluation
functions mentioned in Eqs. (15)-(17), as commonly employed [11,23,29].

The predicted results of the testing deviation values for overall Nusselt number were MEr = 0.39%, RMSE = 3.28x10^{-2}, whereas in predicting j-factor the values were MEr = 1.54%, RMSE = 8.88x10^{-1}, and for friction factor, they were MEr = 4.50%, RMSE = 2.11x10^{-2}. The comparisons of testing data sets for the predicted value results of the overall Nusselt number, j-factor, and friction factor of the developed ANN and the original data (CFD simulation) are plotted in Fig. 4, where the solid line refers the ideal fit (predicted equal original data). The excellent agreement of the figures among the ANN predicted results and the original values with the correlation coefficient higher than $R^2 = 99.505\%$ are notable. Furthermore, lower MRE and MSE values of the test data sets, as well as the difference between the values of acceptable deviation to tees and train data sets, refers to the verification of the ANN models. In addition, the overall Nusselt number, j-factor, and friction factor for the testing data predicted by ANN and actual (CFD) with different geometry and flow parameters are tabulated in Table 4. The maximum relative error was determined at approximately ±1.068%, ±4.369%, and ±6.592%, for overall Nusselt number, j-factor, and friction factor, respectively.

Utilizing the Eq. (15) on the original CFD value to produce the relative error results of the ANN model for the training and testing data is shown in Fig. 5. Fig. 5(a) clearly illustrates the maximum relative errors (E_{max}) for overall Nusselt number are approximately ±1.07% for testing and ±3.85% for training, with the mean relative error (M_{ER}) at 0.39% and 1.43%, respectively. The relative error of j-factor is presented in Fig. 5(b). The E_{max} are approximately ±4.39% for testing and ±5.87% for training, with the M_{ER} at 1.55% and 2.43%, respectively. The f factor's ANN prediction against the CFD values are presented in Fig. 5(c). The ANN yields E_{max} at approxim-
Table 4
Comparison the overall Nusselt number, \(j \)-factor and friction factor of numerical and ANN model for testing data.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>11</th>
<th>16</th>
<th>21</th>
<th>22</th>
<th>26</th>
<th>31</th>
<th>41</th>
<th>46</th>
<th>51</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Nusselt number</td>
<td></td>
</tr>
<tr>
<td>%Er</td>
<td>0.096</td>
<td>0.001</td>
<td>1.068</td>
<td>0.519</td>
<td>0.190</td>
<td>0.884</td>
<td>0.001</td>
<td>0.205</td>
<td>0.734</td>
<td>0.403</td>
<td>0.006</td>
<td>0.481</td>
<td>0.580</td>
</tr>
<tr>
<td>%MEn</td>
<td>0.390</td>
<td></td>
</tr>
<tr>
<td>Colburn (j)-factor</td>
<td></td>
</tr>
<tr>
<td>CFD</td>
<td>0.811</td>
<td>0.290</td>
<td>0.730</td>
<td>0.658</td>
<td>0.629</td>
<td>0.811</td>
<td>0.296</td>
<td>0.730</td>
<td>0.659</td>
<td>0.631</td>
<td>0.811</td>
<td>0.738</td>
<td>0.666</td>
</tr>
<tr>
<td>ANN</td>
<td>0.815</td>
<td>0.278</td>
<td>0.736</td>
<td>0.663</td>
<td>0.637</td>
<td>0.807</td>
<td>0.309</td>
<td>0.726</td>
<td>0.650</td>
<td>0.619</td>
<td>0.799</td>
<td>0.747</td>
<td>0.679</td>
</tr>
<tr>
<td>%Er</td>
<td>0.527</td>
<td>4.159</td>
<td>0.787</td>
<td>0.862</td>
<td>1.248</td>
<td>0.579</td>
<td>4.396</td>
<td>0.570</td>
<td>1.353</td>
<td>1.836</td>
<td>1.470</td>
<td>1.152</td>
<td>1.884</td>
</tr>
<tr>
<td>%MEn</td>
<td>1.535</td>
<td></td>
</tr>
<tr>
<td>Friction factor</td>
<td></td>
</tr>
<tr>
<td>CFD</td>
<td>0.935</td>
<td>0.246</td>
<td>0.401</td>
<td>0.300</td>
<td>0.263</td>
<td>0.955</td>
<td>0.261</td>
<td>0.420</td>
<td>0.293</td>
<td>0.276</td>
<td>0.975</td>
<td>0.437</td>
<td>0.322</td>
</tr>
<tr>
<td>ANN</td>
<td>0.987</td>
<td>0.230</td>
<td>0.411</td>
<td>0.320</td>
<td>0.278</td>
<td>0.958</td>
<td>0.246</td>
<td>0.393</td>
<td>0.297</td>
<td>0.263</td>
<td>0.965</td>
<td>0.410</td>
<td>0.305</td>
</tr>
<tr>
<td>%Er</td>
<td>5.664</td>
<td>6.283</td>
<td>2.489</td>
<td>6.469</td>
<td>5.640</td>
<td>0.326</td>
<td>5.722</td>
<td>6.592</td>
<td>1.384</td>
<td>4.805</td>
<td>1.017</td>
<td>6.169</td>
<td>5.142</td>
</tr>
<tr>
<td>%MEn</td>
<td>4.500</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. The testing results evaluated using ANN for (a) overall Nusselt number, (b) \(j \)-factor and (c) \(f \) factor.

Fig. 5. The relative error for training and testing data using (a) overall Nusselt number (b) \(j \)-factor and (c) \(f \) factor.
ately ±6.59% for testing and ±13.87% for training, with the MErr at 4.50% and 5.57%, respectively.

Fig. 6. Comparison of numerical with ANN results against Reynolds number of the training data for (a) overall Nusselt numbers, (b) j-factor and (c) f factor.

In general, a small relative error was found in the testing data for overall Nusselt number, j-factor, and friction factor. The determined ANN predictions were close to the CFD data with minimal deviations for each point of overall Nusselt number. These results indicate that the ANN model is appropriate in predicting the heat transfer coefficient. The numerically calculated data compared with the predicted ANN results for the training data when $P_L = 3.0$ and $P_T = 2.5$ relative to Reynolds number are presented in Fig. 6. The used base value (CFD) are shown in Table 3 with numbers 7 to 10, as well as predicted ANN data for overall Nusselt number, j-factor, and friction factor. As expected, Nu increases with the rise of the Reynolds number as shown in Fig. 6(a). In contrast, j- and friction factors decrease with increasing Reynolds number, as demonstrated in Fig. 6(b) and (c). The maximum relative error is found at approximately ±2.79%, ±4.03%, and ±7.78% for overall Nusselt number, j-factor, and friction factor, respectively. These trends are extremely similar to the existing CFD results, such that, the initial conditions provided in the ANN model can predict the output variable without implementing any simulation run.

5. CONCLUSIONS

The developed ANN model is applied to estimate the thermal-hydraulic characteristics of in-line flat tubes bank. For all heat transfer and flow parameters, the MErr of the ANN approach range from 1.43% to 5.57% for the training data and from 0.39% to 4.5% for the testing data. The RMSE ranged from 3.67×10^{-3} to 0.219 for the training data and from 8.88×10^{-3} to 3.27 $\times 10^{-2}$ for the testing data. The correlation coefficient for all heat and flow parameters are extremely close to match the lowest value, $R^2 = 99.505%$. Predicting the thermal-fluids characteristics using ANN approach resulted in a good agreement with the simulation data. Thus, this method is proposed as it offers fast, reliable, and accurate results, as well as initial estimates for an engineer to address complex heat transfer and fluid flow problems.

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge the Tikrit University and Universiti Malaysia Pahang for the financial support under project no. RDU120103.

REFERENCES

