Suppression of the Narrow Band Jamming Signal in the Receiver of Spread Spectrum Communication System

Sufian H. Ali

Electrical Engineering Department, College of Engineering, Tikrit University, Salahuddin Province, Al-Qadissiyah, P.O. Box 42, Republic of Iraq.

(Received 14 August 2012, Accepted 12 November 2012, Available online 18 September 2013)

ABSTRACT

This paper describes the design of adaptive finite impulse response (FIR) filter with least mean square (LMS) algorithm by which we can reduce the narrow band jamming impacting the performance spread spectrum communication system (SSS). Simulation results shows that the jamming is rejected and the output signals free from error.

Keywords: LMS, Adaptive filter, FIR and MATLAB

Introduction

Adaptive filters are very versatile device which is being researched continuously in various fields. It play very important role in the field of device noise cancellation, identification, noise reduction and equalization. There two most frequently applied algorithms for noise cancellation are least mean squares (LMS) and recursive least squares (RLS) algorithms. The main advantage of LMS is that it requires simple computation. FIR and IIR filters are used to satisfy some desired specifications. Our goal was to determine the coefficients of digital filter that meet the desired specifications. There are many digital signals processing applications in which the filter coefficients cannot be specified a priori. For example, let as consider a high speed modem that is designed to transmit data over telephone channels. Such a modem employs a filter called a channel equalizer to compensate the channel distortion[1]. The modem must effectively transmit data through communication channels that have different frequency response characteristics and hence result in different distortion effects. The only way in which this is possible is if the channel equalizer has adjustable coefficients that can be optimized to minimize some measure of the distortion, on the basis of measurements performed on the characteristics of the channel. Such a filter with adjustable parameters is called an adaptive filter. The Pseudo noise (PN) signal is one of the spread spectrum signals with a special code has a low level of spectral density. The received additive narrow band jamming (NBJ) caused error of the PN signal detection. The adaptive filter with least mean square (LMS) algorithm is used to reduce the effect of NBJ.

Different researchers have worked on adaptive filters. In [2] Mbachu C.B. is worked on the use of...
the adaptive filter to reduce by about 13 dB
power line interference electrocardiogram (ECG)
and Asst.Prof. Sumit Sharma are worked on
reduction the noise impacting the performance
of digital communication system using adaptive
filter. The simulation results shows that the error
has been reduced considerably adaptive filter
compared with measurement results without
Tsuda, Toshiro Fujii and Tetsuya Shimamura
are worked on the LMS adaptive equalizer using
threshold in impulse noise environments ,where
the variance of the received signal is calculated
and use as the threshold for the LMS algorithm.
In[5] Boza Krstajic, Zdravko Uskokovic are
worked on adaptive channel equalizer with new
Cui Ning are worked on the LMS adaptive filter
used to noise cancelation when desired signal is
sinusoidal and the noise sinusoidal or not
sinusoidal.

Direct form of adaptive FIR filter

Both FIR and IIR filters have been considered
for adaptive filtering ,the FIR filter is by far the
most practical and widely used. The reason for
this preference is quite simple. The FIR filter has
only adjustable zeros, hence it is free of stability
problems associated with IIR filters that have
adjustable poles as well as zeros[1].The direct
form and lattice form structures(adaptive
filter)are used for FIR filters. The direct form FIR
filter structure with adjustable coefficients
\(h(0), h(1), h(2), h(3), \ldots, h(N-1) \) is illustrated
in Fig.1[1,2].

![Direct form of FIR filter](image)

Least mean square (LMS) algorithm for
coefficients adjustment

Suppose we have an FIR with adjustable
coefficients \(\{h(k)\}, \ 0 \leq k \leq N-1 \). Let \(\{x(n)\} \) denote
the input sequence to the filter and let the
 corresponding output by \(\{y(t)\} \), where

\[
y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)
\]

Where \(n = 0, \ldots, N-1 \).

Suppose that we also have a desired sequence
\(\{d(n)\} \) with which we have compare the FIR filter
output. Then we can form the error sequence
\(\{e(n)\} \) by taking the difference between \(d(n) \) and
\(y(n) \) \([1,5,6]\). That is,

\[
e(n) = d(n) - y(n)
\]

Where \(n = 0 \ldots N-1 \).

Then coefficients of the FIR filter will be selected
to minimize the sum of squared errors[2]. Thus we have

\[
\varepsilon = \sum_{n=0}^{M} e^2(n) = \sum_{n=0}^{M} [d(n) - \sum_{k=0}^{N-1} h(k)x(n-k)]^2
= \sum_{n=0}^{M} d(n)^2 - 2 \sum_{k=0}^{N-1} h(k)r(k)_{dx} + \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} h(k)h(l)r(k-l)_{xx}
\]

Where,

\[
r(k)_{dx} = \sum_{n=0}^{M} d(n)x(n-k), \quad 0 \leq k \leq N-1
\]

And

\[
r(k)_{xx} = \sum_{n=0}^{M} x(n)x(n+k), \quad 0 \leq k \leq N-1
\]

we call \(\{r(k)_{dx}\} \) the cross correlation between
the desired output sequence \(\{d(n)\} \) and the input
sequence \(\{x(n)\} \), and \(\{r(k)_{xx}\} \) is the
autocorrelation sequence of \(\{x(n)\} \).

The sum of squared error \(\varepsilon \) is a quadratic
function of the FIR filter coefficients. Consequently,
the minimization of \(\varepsilon \) with respect
to the filter coefficients \(\{h(k)\} \) results in a set of
linear equations[2]. By differentiating ε with respect to each of the filter coefficients, we obtain
\[
\frac{d \varepsilon}{dh(m)} = 0
\]
(4)

0 ≤ m ≤ N − 1

And hence
\[
\sum_{k=0}^{N-1} h(k)r(k-m)_{xx} = r(m)_{dx}
\]
(5)

0 ≤ m ≤ N-1

This is the set of linear equations that yield the optimum filter coefficients. To solve the set of linear equations directly, we must first compute the autocorrelation sequence \(r_{xx}(k)\) of the input signal and the cross correlation sequence \(r_{dx}(k)\) between the desired sequence \(d(n)\) and the input sequence \(x(n)\).

The LMS algorithm provides an alternative computational method for determining the optimum filter coefficients \(\{h(k)\}\) without explicitly computing the correlation sequences \(\{r_{xx}(k)\}\) and \(\{r_{dx}(k)\}\). The algorithm is basically a recursive gradient(steepest descent) method that finds the minimum of ε and thus yields the set of optimum filter coefficients[1].

We begin with any arbitrary choice for the initial values of \(\{h(k)\}\), say \(\{h_0(k)\}\). For example, we may begin with \(h_0(k)=0\), 0 ≤ k ≤ N-1. Then after each new input sample \(\{x(n)\}\) enters the adaptive FIR filter, we compute the corresponding output, say \(\{y(n)\}\), form error signal \(e(n)=d(n)-y(n)\), and update the filter coefficients according to the equation:
\[
h(k)_{n} = h(k)_{n-1} + \Delta \cdot e(n) \cdot x(n-k)
\]
(6)

Where 0 ≤ k ≤ N-1, n=0,1,⋯, \(\Delta\) is call the step size parameters. \(x(n-k)\) is the sample of the input signal located at the \(K_{th}\) tap of the filter at time \(n\), and \(e(n)\cdot x(n-k)\) is an approximation (estimate) of the negative of the gradient for the \(k_{th}\) filter coefficient. This is the LMS recursive algorithm for adjusting the filter coefficients adaptively so as to minimize the sum of squared errors. The step size parameter \(\Delta\) Controls the rate of convergence of the algorithm to the optimum solution[1]. A large value of \(\Delta\) leads to large step size adjustment and thus to rapid convergence, while a small value of \(\Delta\) results in slow convergence. However, if \(\Delta\) is made too large the algorithm becomes unstable. To ensure stability, \(\Delta\) must be chosen to be in the range
\[
0 \leq \Delta \leq \frac{1}{10N_p x}
\]
(7)

Where \(N\) is the length of the adaptive FIR filter and \(P_x\) is the power of the input signal, which can be approximated by
\[
P_x = \frac{1}{1+M} \sum_{n=0}^{M} x(n)^2 = \frac{r_{0,xx}}{M+1}
\]
(8)

Suppression of narrowband interference in a spread spectrum communication system

Let us assume that we have a signal sequence \(\{x(n)\}\) that consists of a desired spread spectrum[pseudo noise(PN)] signal sequence, say \(\{w(n)\}\), corrupted by an additive narrowband interference sequence \(\{s(n)\}\). The sequences \(w(n)\) and \(s(n)\) are uncorrelated. This problem arises in digital communications and in signal detection, where the desired signal sequence \(\{w(n)\}\) is a spread spectrum signal, while the narrowband interference represents a signal from another user of the frequency band or some intentional interference from a jammer who is trying to disrupt the communication or detection system[1,3,6]. Simplicity of analysis we use sinusoidal interference sequence \(\{s(n)\}\) as a jamming signal[7].

\[
s(n) = A \sin(\omega_0 n)
\]
(9)

Where 0 ≤ \(\omega_0\) ≤ 2π

The suppression of jamming \(s(n)\) shown in Fig. 2.
Simulation of the jamming suppression using MATLAB

We make the program by MATLAB. By this program we generate the spread spectrum signal (pseudo noise signal) and narrow band jamming signal (for simplicity we used pure sinusoidal signal as the jamming). This program also consist the processing of the jamming rejection. Know we discuss the results as follow:

a). The generated sequence (input signal) as follow: 1 1 1 -1 -1 -1 1 1 1 1 1 1 1 -1 -1 1 1 1
This sequence is shown in Fig.(5).

Fig.5. Output PN signal

We see from last sequence and Fig.(5) that the output and input signals are identical. This mean that the operation of adaptive filter is correct. Adaptive FIR is very stable and automatically tuned to new frequency jamming. The step size of the LMS adaptive filter in this paper we change continuously to find the good result for jamming suppression. Fig.(6) shows cross correlation between the output spread spectrum signal and the input spread spectrum signal for two threshold.

Fig.6. Correlation of output spread spectrum with two threshold.

First threshold equal ‘1’ volt, this mean that threshold equal the pulse amplitude of input and output spread spectrum signals. Second threshold equal 0.5 volt, i.e. equal 50% of pulse amplitude of last signals. The peak of the correlation output higher than maximum side lobe by about 11dB when the threshold is 0.5volt, and higher than maximum side lobe by about 4dB when the threshold is 1volt.

Conclusions

This paper has studied the theory of adaptive filter based on LMS algorithm to suppress the narrow band jamming in the spread spectrum system. From the result of simulation by MATLAB we see that the output of PN sequence with very small error. The cross correlation between output and input spread spectrum PN sequence has a large one peak and small side lobs, i.e. FIR adaptive filter is effectively cancel the strong narrow band jamming.

References

