
Tikrit Journal of Engineering Sciences (2017) 24 (3) 15 - 20 15

ISSN: 1813-162X (Print) ; 2312-7589 (Online)

Tikrit Journal of Engineering Sciences

available online at: http://www.tj-es.com

Abdulkreem Mohameed
Salih *

Ahlam Fadhil Mahmood

Computer Engineering Department
University of Mosul
Mosul
Iraq

Keywords:

JPEG

CODEC

compressor

decompressor

FPGA

DCT

A R T I C L E I N F O

Article history:

Received 3 January 2012

Accepted 28 May2012

Available online 30 September 2017 T
ik

ri
t

Jo
u

rn
a

l
o

f
E

n
g

in
ee

ri
n

g

S
ci

en
ce

s

T
ik

ri
t

Jo
u

rn
a
l

o
f

E
n

g
in

ee
ri

n
g
 S

ci
en

ce
s

T
ik

ri
t

Jo
u

rn
a
l

o
f

E
n

g
in

ee
ri

n
g

 S
ci

en
ce

s

 T
ik

ri
t

Jo
u

rn
a

l
o

f
E

n
g

in
ee

ri
n

g
 S

ci
en

ce
s

Design and Implementation of a
Gray Scale JPEG CODEC on
Spartan-3E

A B S T R A C T

This paper presents the design and implementation of the hardware JPEG CODEC

for gray scale images. The architecture is designed in a way based on modules that

a share between JPEG encoder and decoder circuit. Each module was designed to

implement a forward and backward function and they have separate control signals.

The JPEG CODEC (Compressor, Decompressor) architecture achieves high

throughput with a deep and optimized pipeline, with a target to FPGA device

implementation. The designed architectures are detailed in this paper and they are

described in VHDL, simulated and physically mapped to XC3S500 FPGAs. The

JPEG CODEC pipeline has a minimum latency of 166 clock cycles, that given the

full modular pipeline depth. The CODEC could process a 512X 512 pixels still

image in 5.2ms, reaching a maximum processing rate of 190 frames per second.

 © 2017 TJES, College of Engineering, Tikrit University

DOI: http://dx.doi.org/10.25130/tjes.24.3.03

 للبرمجة القابلة البوابات رقاقة على الرمادية للصور الكبس وفك كبس وتنفيذ تصميم

 الخلاصة

 كلها وحداتال هذه وحدات الى الخوارزمية تجزئة على تعتمد بطريقة صممت المعمارية .الرمادية للصور JPEG CODEC ال لمعمارية مادي وتنفيذ تصميم البحث هذا قدم

 .خرىالأ عن منفصلة سيطرة إشارات منها ولكل الكبس وفك الكبس وظيفة تؤدي بحيث بطريقة صممت الوحدات هذه من وحدة كل .الكبس وفتح الكبس دائرة بين مشتركة
 ةوموصوف البحث هذا في موضحة المصممة المعماريات .FPGAإل تقنية باستخدام الأنابيب خط خاصية مستخدمة عالية بإخراجية انجزت JPEG CODEC ال معمارية

 كبس فتح أو كبس على قادرة وتكون نبضة166 بمقدار تتأخر الأنابيب بخط الكبس معمارية . XC3S500 FPGAsنوع رقاقة على والتركيب المحاكاة تنفيذ تمVHDL بلغة

 .الواحدة للثانية أطار 190 بحدود معالجة اكبر تصل حيث ثانية ملي 5,2 وبزمن صورية نقطة 512X512 بحجم صورة

1. INTRODUCTION

JPEG (Joint Photographic Expert Group) is a well-

known method for compressing still image and has been

adopted as the compression standard for still photographic

images [1]. JPEG compression algorithm is very complex

and supports different operation modes [1,2]. The

professionals in a software and hardware designers

implement baseline mode, the one most widely used across

the industry [3]. The baseline mode will be used as a

reference for the design and architecture.

Implementation of the JPEG CODEC on a hardware

is a big challenge for most of the researchers as it requires

a complex hardware. Volcan et al. provided a JPEG

compressor for gray scale images directed to Altera

Flex10KE FPGAs [4]. It processes an image of 640 x 480

* Corresponding author: E-mail : abdlat_1986@yahoo.com

pixels in 8.2 ms with minimum latency of 238 clock cycles.

In 2007, Tumeo et al. [5] designed a JPEG encoder by

using Virtex II-Pro XC2VP30, they proposed a mixed

HW/SW architecture. Hardware JPEG CODEC was

synthesized for Xilinx Virtex-II FPGA device on

ARM926EJS emulation base board which can operate at

frequencies up to 6MHz [2].

A parallel image compression system for high-speed

camera was presented by Nishikawa et al. [6]. The

proposed architecture requires much less hardware with

high quality reconstructed image. In this paper, a high

performance JPEG CODEC was proposed for gray images.

All JPEG CODEC blocks were designed, optimized and

coded in VHDL, a hardware description language. Full

simulation of the design was done with ISE10.1,

ModelSim which was chosen for synthesis. Xilinx™,

mapping, placement and routing tool were used at final

http://www.tj-es.com/
http://dx.doi.org/10.25130/tjes.24.3.03
mailto:abdlat_1986@yahoo.com

Abdulkreem Mohameed Salih and Ahlam Fadhil Mahmood / Tikrit Journal of Engineering Sciences 24 (3) 2017 (15-20) 16

Nomenclature

CODEC COmpress DECompress

DLS Encoder Level Shift

ELS Encoder Level Shift

FDCT Forward Discrete Cosine Transform

IDCT Inverse Discrete Cosine Transform

IEntropy Inverse Entropy

InvQuantization Inverse Quantization

IZigzag Inverse Zigzag

JPEG Joint Point Expert Group

stages of prototyping. JPEG CODEC performance was

tested on XC3S500 Starter kit.

2. JPEG CODEC ARCHITECTURE

The block diagram of the JPEG CODEC is shown in

Fig. 1, it can work as encoder as well as decoder of JPEG

system. JPEG CODEC utilizes Encoder Level

Shift/Decoder Level Shift (ELS/DLS), FDCT/IDCT &

Quantization/InvQuantization, Zigzag/IZigzag and

Entropy/IEntropy. All modules are shared between JPEG

encoder and decoder, thereby considerably reducing the

total size of the JPEG CODEC.

The designed baseline JPEG CODEC architecture

can be broadly classified into five main blocks; they are

described in detail below.

Fig. 1. Block diagram of JPEG CODEC.

3. ENCODER LEVEL SHIFT/DECODER
LEVEL SHIFT (ELS/DLS)

This block reads the input samples from the input

buffer. It generates a signal to subtract or add 128,

according to the encoding or decoding application. The

input to this block is 8-bit data while the encode operations

vary from (0 to 255). Each input sample is subtracted by

128, thus changing the range between (-128 to 127). This

block makes the values to zero-center and converts them

from unsigned value to the signed value. When this block

operates as a decoder its input ranges between (128- to

127+). Each input sample is added by 128, thus changing

the range from (0 to 255). This block converts the values

from signed to unsigned value. The level shifted the output

data which given to DCT/IDCT block.

4. 2D DCT/IDCT BLOCK

The 2D DCT is computationally intensive and as such

there is a great demand for high speed, high throughput and

short latency computing architectures. Several hardware

design methods for the implementation of the 2D DCT

have been developed in the recent years [7-10].

The proposed 2D DCT architecture targets power

efficiency by minimizing the number of the arithmetic

operations, and it is design using row column

decomposition technique. The major concern in finding the

1D DCT/IDCT is the number of multipliers which are

reduced by a factor of two.

The two dimensional 2D DCT in Eq. (1) transforms

an (8x8) block of picture samples x(m,n), into spatial

frequency components Z(u,v) for 0 ≤ u,v ≤ 7. The IDCT in

Eq. (2) performs the inverse transform for 0≤ m, n ≤ 7. In

Eqs. (1) and (2), α(0)=1/√2 and α(j)=1, j≠0.

This transformation can also be expressed in a matrix

notation

𝑍 = 𝐶𝑌𝑇, 𝑌 = 𝐶𝑋𝑇 (3)

where C is an N×N matrix whose basis vectors are sampled

cosines. X is (8x8) input matrix and Y is the intermediate

result. The 2D DCT/IDCT, as shown in Fig. 2, was

decomposed in two 1D DCT/IDCT (as written in Eq. (3)),

named as Row-DCT/IDCT and Column-DCT/IDCT and a

Transpose Buffer, so Eq. (4) is rewritten in matrix form:

 (4)

As a result, the separable 2D DCT computation can

be obtained by using 1D DCT computations as follows:

2𝐷 − 𝐷𝐶𝑇(𝑥) = 1𝐷 − 𝐷𝐶𝑇(1𝐷 − 𝐷𝐶𝑇(𝑥))𝑇 (5)

In 2D IDCT, similarity, a separable M×N point 2D IDCT

can be obtained by row-column decomposition method.

Thus the 2D-IDCT computation using 1D-IDCT

computations is as follows.

2𝐷 − 𝐼𝐷𝐶𝑇(𝑧) = 1𝐷 − 𝐼𝐷𝐶𝑇 ((1𝐷 − 𝐼𝐷𝐶𝑇(𝑧))𝑇) (6)

 X = TYT (7)

𝑧(𝑢, 𝑣) =
1

√𝑀
∑ √2

𝑀−1

𝑚=0

𝐶(𝑢). 𝑐𝑜𝑠 [
(2𝑚 + 1)𝑢𝜋

2𝑀
] {

1

√𝑁
∑ √2𝐶(𝑣)

𝑁−1

𝑛=0

. 𝑐𝑜𝑠 [
(2𝑛 + 1)𝑣𝜋

2𝑁
] . 𝑥(𝑚, 𝑛)} (1)

(𝑚, 𝑛) =
2𝐶(𝑢)𝐶(𝑣)

√𝑀. 𝑁
∑ ∑ 𝑧(𝑢, 𝑣). 𝑐𝑜𝑠 [

(2𝑚 + 1)𝑢𝜋

2𝑀
]

𝑁−1

𝑣=0

𝑀−1

𝑢=0

𝑐𝑜𝑠 [
(2𝑛 + 1)𝑣𝜋

2𝑁
] (2)

Tikrit Journal of Engineering Sciences (2017) 24 (3) 15 - 20 17

Fig. 2. The 2D DCT/IDCT unit architecture.

4.1. Quantization/Invquantization

Quantization is defined as a division of each DCT

coefficient by the corresponding quantization value.

Division operations are not efficient for a hardware

resources so they are replaced by multiplication and shift

operations. In inverse-quantization, the quantized DCT

coefficient that multiplied by the corresponded coefficient

in a quantization table thereby the two operations use a

multiplication operation. Fig. 3 shows the quantization/

inverse-quantization architecture. This architecture uses

two ROMs memories and one multiplier. In quantization

process, the values in the standard quantization tables used

for division were transformed into multiplier values and

stored in the ROM. The multiplier is shared between

quantization and inverse-quantization process.

Fig. 3. The Quantization/InvQuantization unit.

4.2. Zigzag/Izigzag

In zigzag scanning, the quantized DCT coefficients

read in a zigzag order. This scan puts the high frequency

coefficients together, each of these coefficients is usually

zero. The architecture for the zigzag/inverse zigzag is

shown in Fig. 4, consisting two transpose buffers RAM1

and RAM2, which are used to synchronize the procedure

in pipeline manner, after 64 locations are written, RAM1

goes into read mode and RAM2 goes into write mode. The

buffer latency is 64 clock cycles where the scanning order

requires that some of the later coefficients that available in

the beginning. Every 64 clock RAMs make change from

write mode to read mode alternatively by Toggle2 which

switch signal from '0' to '1' at every 64 clock cycles. The

implementation of the zigzag/Inverse-zigzag on the same

architecture makes use of more optimized resources, by

sharing these resources where two RAMs are used in

zigzag and inverse-zigzag instead of using two RAMs for

each one.

Fig. 4. The Block diagram of Zigzag.

4.3. Entropy/Inverse Entropy

The proposed entropy coding module consists of two

interrelated modules, as shown in Fig. 5, the run length

encoder and the Huffman encoder modules. The output of

Abdulkreem Mohameed Salih and Ahlam Fadhil Mahmood / Tikrit Journal of Engineering Sciences 24 (3) 2017 (15-20) 18

zigzag is input to the run length encoder as data stream.

There are three outputs of the run length encoder; the first

output is an amplitude value, the second is a run length of

zeros, and the third is the flag bit that indicates nonzero

value. These outputs will provide input to Huffman

encoder.

Fig. 5. Entropy encoder block diagram.

The run length encoder is a fairly simple concept

which looks for runs of zeros in the data stream as shown

in Fig. 6. The run length encoder will output an amplitude

value, a run length of zeros, and flag as indicator for

nonzero coefficients. Every coefficient which equals zero

increases an internal counter which counts the run of zeros.

Every nonzero coefficient input to the run length encoder

will output a set of values.

Fig. 6. The run length of the encoder architecture.

The run length, amplitude, and the flag values from

the run length encoder are used as input to the Huffman

encoder. Instead of assigning code word as in the standard

Huffman Tables to produce the output which has unequal

number of bits and the maximum is 16-bits as well as

amplitude value, the proposed architecture will produce the

run length of zeros with amplitude as output data. Where

its size is 15-bits which are equal all the output, thereby

will make the reconstruction of the compressed data to be

less complex and easier to be predicted than in the case of

Huffman tables. Another advantage is that there is no need

for ROM to store Huffman tables.

The reversible operations are used in the entropy

decoder. The compressed input data has an equal lengths

of number of bits. The Huffman decoder separates the run

length and amplitude. If the run length value is zero, it will

send the amplitude directly as input to inverse zigzag stage,

otherwise, it will send zero values as input and decrease the

value of the run length of zeros, until the run length value

becomes zero then it will send the amplitude value and read

another input from the compressed data. Fig. 7 shows the

entropy decoder.

Fig. 7. The block diagram of the entropy decoder.

4.4. FPGA Implementation of the JPEG
CODEC

The proposed architectures have been described by

means of VHDL language. The results are summarized in

Table 1.

The latency for the architecture is 166 clock cycles for the

compressor and 165 clock cycles for the decompressor.

Figs. 8 and 9 show the simulation results for the

compressor and the decompressor respectively.

Table 1

Synthesis of JPEG CODEC for Xilinx Spartan- 3E

XC3S500.

FPGA Resource JPEG CODEC

No. of Slices 3132 out of 4656 67%

No. of Slice Flip Flops 3209 out of 9312 34%

No. of 4 input LUTs 4442 out of 9312 47%

No. of bonded IOBs 18 out of 232 8%

No. of Slices 3132 out of 4656 67%

BRAMs 0

Mult18x18s 9 out of 20 45%

Performance 78,92 MHz

Fig. 8. Simulation results for JPEG Compressor.

19 Abdulkreem Mohameed Salih and Ahlam Fadhil Mahmood / Tikrit Journal of Engineering Sciences 24 (3) 2017 (15-20)

Fig. 9. Simulation results for JPEG DeCompressor.

Table 2 shows the PSNR and compression ratio (CR)

for some standard of gray-scale (512×512) images.

Table 2

PSNR and CR for some of standard gray-scale images.

Goldhill

Peppers

PSNR=28,0620dB SNR=27,9920dB

CR=16 CR=16,29

Boat Sailboat

 PSNR=28,4104dB PSNR=26,6533dB

 CR=15,93 CR=12,6

4.5. JPEG Architectures Comparison

This paper verifies an overall recent comparison for

the JPEG CODEC which involves the required multipliers

and the performance of the proposed architectures as

compared to the previous JPEG CODEC architectures. All

architectures are pipelined; the proposed architecture

reduces the arithmetic operations by 45% as compared to

the newer JPEG CODEC that is illustrated in Table 3.

4.6. System on Chip

Figure 10 shows the experimental setup for the JPEG

CODE system. It consists of host terminal PC and Spartan-

3E XC3S500 FPGA. Host terminal PC is connected to the

soft processor through USB (Universal Serial Bus) cable.

Data in memory that is embedded on FPGA could be read

and displayed on the computer screen by using a

Microblaze processor which makes interface between the

data buffer and I/O peripherals which are available on the

board as RS232. This peripheral allows to upload the image

from the memory in FPGA and displays it on the computer.

Table 3

Comparison for the JPEG CODEC.

Ref. [4] [11] [2] Proposed

No. of

Multiplier
- - 20 9

Latency

(Cycles)
238 243 NA

166 for C

165 for D

Frame/sec 122,4 114 NA 190

Frequency

(MHZ)
37,6 39,6 6 78,969

BRAMs 2 6
1

Dual Port
-

FPGA
Fle-

x10KE

Fle-

x10KE
XC2-V8000

XC3-

S500E

Function C C C&D C&D

C=Compression Operation

D=Decompression Operation

NA=Not Available

Fig. 10. Emulation setup.

5. CONCLUSIONS

A pipelined JPEG CODEC is designed and

implemented on Spartan-3E FPGA for gray scale images

format. The proposed architecture was designed in a

modular that performs forward/backward function to allow

the reuse of all modules in any other future designs. A

(8x8) points low power 2D-DCT/IDCT is also

implemented using a shared transpose buffers between

DCT and IDCT. The quantization and inverse quantization

unit are shared in one multiplier.

In the entropy encoder the Huffman tables that are

required to reduce memory since no need for storing these

tables in ROM, thus it makes the process reconstruction

easier with suitable compression ratio as shown in Table 2.

Other stages are also implemented in optimized method by

sharing resources and latency for overall JPEG CODEC.

The designed JPEG CODEC gives a higher throughput

which is suitable for real time video applications since the

latency equals to 166 clock cycles.

Abdulkreem Mohameed Salih and Ahlam Fadhil Mahmood / Tikrit Journal of Engineering Sciences 24 (3) 2017 (15-20) 20

REFERENCES

[1] Achaya T, Tsai P. JPEG2000 Standard for Image

Compression Awiley-Interscience; 2005.

[2] Tiwari T, Reddy SC. Performance measurement of a

fully pipelined JPEG codec on emulation platform.

2nd International Advance Computing Conference

(IACC), IEEE 2010: p. 167–171.

[3] Yang H, Wang L. Joint optimization of run-length

coding, huffman coding, and quantization table with

complete baseline JPEG decoder compatibility. IEEE

Transactions on Image Processing 2009; 18(1): 63–

74.

[4] Volcan L, Porto RC, Bampi S, Silva IS. A FPGA

based design of a multiplierless and fully pipelined

JPEG compressor. 8th Euromicro conference on

Digital System Design (DSD’05) 2005; IEEE: p. 210–

213.

[5] Tumeo A, Monchiero M, Palermo G, Ferrandi F,

Sciuto D. An internal partial dynamic reconfiguration

implementation of the JPEG encoder for low-cost

FPGAs. IEEE Computer Society Annual Symposium

on VLSI (ISVLSI'07) 2007; p. 449–450.

[6] Nishikawa Y, Kawahito S, Inoue T. A parallel image

compression system for high-speed cameras.

Imaging Systems and Techniques, IEEE

International Workshop on 2007: p. 53–57.

[7] Leong MP, Leong HW. A variable-radix digit-serial

design methodology and its application to the discrete

cosine transform. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 2003; 11 (1): 90–

104.

[8] Gloster C, Gay JW, Amoo M, Chouikha M.

Optimizing the design of a configurable digital signal

processor for accelerated execution of the 2-D

discrete cosine transform. 39th Hawaii International

Conference on System Sciences 2006: p. 250c-250c.

[9] Megalingam RK, Krishnan V, Sarma V, Mithun M,

Srikumar R. Hardware implementation of low power,

high speed DCT/IDCT based digital image

watermarking. International Conference on

Computer Technology and Development 2009: p.

535–539.

[10] Sun CC, Donner P, Gotze J. Low-complexity multi-

purpose ip core for quantized discrete cosine and

integer transform. Circuits and Systems, ISCAS 2009.

IEEE International Symposium: p. 3014–3017.

[11] Agostini LV, Bampi S, Silva IS. High throughput

architecture of JPEG compressor for color images

targeting FPGAs. Electronics, Circuits and Systems,

ICECS '06. 13th IEEE International Conference

2016: p.180–183.

