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Design and Implementation of a 
Gray Scale JPEG CODEC on 
Spartan-3E  
 
A B S T R A C T  
 

This paper presents the design and implementation of the hardware JPEG CODEC 

for gray scale images. The architecture is designed in a way based on modules that 

a share between JPEG encoder and decoder circuit. Each module was designed to 

implement a forward and backward function and they have separate control signals. 

The JPEG CODEC (Compressor, Decompressor) architecture achieves high 

throughput with a deep and optimized pipeline, with a target to FPGA device 

implementation. The designed architectures are detailed in this paper and they are 

described in VHDL, simulated and physically mapped to XC3S500 FPGAs. The 

JPEG CODEC pipeline has a minimum latency of 166 clock cycles, that given the 

full modular pipeline depth. The CODEC could process a 512X 512 pixels still 

image in 5.2ms, reaching a maximum processing rate of 190 frames per second. 
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      للبرمجة القابلة البوابات رقاقة على الرمادية للصور الكبس وفك كبس وتنفيذ تصميم

 الخلاصة

 كلها وحداتال هذه وحدات الى الخوارزمية تجزئة على تعتمد بطريقة صممت المعمارية .الرمادية للصور JPEG CODEC ال لمعمارية مادي وتنفيذ تصميم البحث هذا قدم

 .خرىالأ عن منفصلة سيطرة إشارات منها ولكل الكبس وفك الكبس وظيفة تؤدي بحيث بطريقة صممت الوحدات هذه من وحدة كل .الكبس وفتح الكبس دائرة بين مشتركة
 ةوموصوف البحث هذا في موضحة المصممة المعماريات .FPGAإل تقنية باستخدام الأنابيب خط خاصية مستخدمة عالية بإخراجية انجزت JPEG CODEC ال معمارية

 كبس فتح أو كبس على قادرة وتكون نبضة166 بمقدار تتأخر الأنابيب بخط الكبس معمارية . XC3S500 FPGAsنوع رقاقة على والتركيب المحاكاة تنفيذ تمVHDL  بلغة

 .الواحدة للثانية أطار 190 بحدود معالجة اكبر تصل حيث ثانية ملي 5,2 وبزمن صورية نقطة 512X512 بحجم صورة

1. INTRODUCTION 

JPEG (Joint Photographic Expert Group) is a well-

known method for compressing still image and has been 

adopted as the compression standard for still photographic 

images [1].  JPEG compression algorithm is very complex 

and supports different operation modes [1,2]. The 

professionals in a software and hardware designers 

implement baseline mode, the one most widely used across 

the industry [3]. The baseline mode will be used as a 

reference for the design and architecture.   

Implementation of the JPEG CODEC on a hardware 

is a big challenge for most of the researchers as it requires 

a complex hardware. Volcan et al. provided a JPEG 

compressor for gray scale images directed to Altera 

Flex10KE FPGAs [4]. It processes an image of 640 x 480 
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pixels in 8.2 ms with minimum latency of 238 clock cycles. 

In 2007, Tumeo et al. [5]   designed   a JPEG encoder by 

using Virtex II-Pro XC2VP30, they proposed a mixed 

HW/SW architecture. Hardware JPEG CODEC was 

synthesized for Xilinx Virtex-II FPGA device on 

ARM926EJS emulation base board which can operate at 

frequencies up to 6MHz [2]. 

A parallel image compression system for high-speed 

camera was presented by Nishikawa et al. [6]. The 

proposed architecture requires much less hardware with 

high quality reconstructed image. In this paper, a high 

performance JPEG CODEC was proposed for gray images. 

All JPEG CODEC blocks were designed, optimized and 

coded in VHDL, a hardware description language. Full 

simulation of the design was done with ISE10.1, 

ModelSim which was chosen for synthesis. Xilinx™, 

mapping, placement and routing tool were used at final  

http://www.tj-es.com/
http://dx.doi.org/10.25130/tjes.24.3.03
mailto:abdlat_1986@yahoo.com
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Nomenclature 

CODEC  COmpress DECompress         

DLS  Encoder Level Shift 

ELS  Encoder Level Shift     

FDCT  Forward Discrete Cosine Transform 

IDCT  Inverse Discrete Cosine Transform 

IEntropy Inverse Entropy  

InvQuantization Inverse Quantization               

IZigzag  Inverse Zigzag 

JPEG  Joint Point Expert Group 

stages of prototyping. JPEG CODEC performance was 

tested on XC3S500 Starter kit. 

 

2. JPEG CODEC ARCHITECTURE 

The block diagram of the JPEG CODEC is shown in 

Fig. 1, it can work as encoder as well as decoder of JPEG 

system.  JPEG CODEC utilizes Encoder Level 

Shift/Decoder Level Shift (ELS/DLS), FDCT/IDCT & 

Quantization/InvQuantization, Zigzag/IZigzag and 

 

Entropy/IEntropy. All modules are shared between JPEG 

encoder and decoder, thereby considerably reducing the 

total size of the JPEG CODEC. 

The designed baseline JPEG CODEC architecture 

can be broadly classified into five main blocks; they are 

described in detail below. 

 

Fig. 1.  Block diagram of JPEG CODEC. 

3. ENCODER LEVEL SHIFT/DECODER 
LEVEL SHIFT (ELS/DLS) 

This block reads the input samples from the input 

buffer. It generates a signal to subtract or add 128, 

according to the encoding or decoding application. The 

input to this block is 8-bit data while the encode operations 

vary from (0 to 255). Each input sample is subtracted by 

128, thus changing the range between (-128 to 127). This 

block makes the values to zero-center and converts them 

from unsigned value to the signed value. When this block 

operates as a decoder its input ranges between (128- to 

127+). Each input sample is added by 128, thus changing 

the range from (0 to 255). This block converts the values 

from signed to unsigned value. The level shifted the output 

data which given to DCT/IDCT block. 

4.  2D DCT/IDCT BLOCK  

The 2D DCT is computationally intensive and as such 

there is a great demand for high speed, high throughput and 

short latency computing architectures. Several hardware 

design methods for the implementation of the 2D DCT 

have been developed in the recent years [7-10].  

The proposed 2D DCT architecture targets power 

efficiency by minimizing the number of the arithmetic 

operations, and it is design using row column 

decomposition technique. The major concern in finding the 

1D DCT/IDCT is the number of multipliers which are 

reduced by a factor of two. 

The two dimensional 2D DCT in Eq. (1) transforms 

an (8x8) block of picture samples x(m,n), into spatial 

frequency components Z(u,v) for 0 ≤ u,v ≤ 7. The IDCT in 

Eq. (2) performs the inverse transform for 0≤ m, n ≤ 7. In 

Eqs. (1) and (2), α(0)=1/√2 and α(j)=1, j≠0. 

This transformation can also be expressed in a matrix 

notation  

𝑍 = 𝐶𝑌𝑇, 𝑌 = 𝐶𝑋𝑇                                                                (3)                             

where C is an N×N matrix whose basis vectors are sampled 

cosines. X is (8x8) input matrix and Y is the intermediate 

result. The 2D DCT/IDCT, as shown in Fig. 2, was 

decomposed in two 1D DCT/IDCT (as written in Eq. (3)), 

named as Row-DCT/IDCT and Column-DCT/IDCT and a 

Transpose Buffer, so Eq. (4) is rewritten in matrix form: 

 

   (4) 

As a result, the separable 2D DCT computation can 

be obtained by using 1D DCT computations as follows: 

2𝐷 − 𝐷𝐶𝑇(𝑥) = 1𝐷 − 𝐷𝐶𝑇(1𝐷 − 𝐷𝐶𝑇(𝑥))𝑇              (5)        

In 2D IDCT, similarity, a separable M×N point 2D IDCT 

can be obtained by row-column decomposition method. 

Thus the 2D-IDCT computation using 1D-IDCT 

computations is as follows. 

2𝐷 − 𝐼𝐷𝐶𝑇(𝑧) = 1𝐷 − 𝐼𝐷𝐶𝑇 ((1𝐷 − 𝐼𝐷𝐶𝑇(𝑧))𝑇)    (6) 

 X = TYT                                                                                  (7)       

𝑧(𝑢, 𝑣) =
1

√𝑀 
∑ √2

𝑀−1

𝑚=0

𝐶(𝑢). 𝑐𝑜𝑠 [
(2𝑚 + 1)𝑢𝜋

2𝑀
] {

1

√𝑁
∑ √2𝐶(𝑣)

𝑁−1

𝑛=0

. 𝑐𝑜𝑠 [
(2𝑛 + 1)𝑣𝜋

2𝑁
] . 𝑥(𝑚, 𝑛)} (1) 

(𝑚, 𝑛) =
2𝐶(𝑢)𝐶(𝑣)

√𝑀. 𝑁
∑ ∑ 𝑧(𝑢, 𝑣). 𝑐𝑜𝑠 [

(2𝑚 + 1)𝑢𝜋

2𝑀
]

𝑁−1

𝑣=0

𝑀−1

𝑢=0

𝑐𝑜𝑠 [
(2𝑛 + 1)𝑣𝜋

2𝑁
]    (2) 
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Fig. 2. The 2D DCT/IDCT unit architecture.

4.1. Quantization/Invquantization 

Quantization is defined as a division of each DCT 

coefficient by the corresponding quantization value. 

Division operations are not efficient for a hardware 

resources so they are replaced by multiplication and shift 

operations. In inverse-quantization, the quantized DCT 

coefficient that multiplied by the corresponded coefficient 

in a quantization table thereby the two operations use a 

multiplication operation. Fig. 3 shows the quantization/ 

inverse-quantization architecture. This architecture uses 

two ROMs memories and one multiplier. In quantization 

process, the values in the standard quantization tables used 

for division were transformed into multiplier values and 

stored in the ROM. The multiplier is shared between 

quantization and inverse-quantization process. 

 

Fig. 3. The Quantization/InvQuantization unit. 

4.2. Zigzag/Izigzag 

In zigzag scanning, the quantized DCT coefficients 

read in a zigzag order. This scan puts the high frequency 

coefficients together, each of these coefficients is usually 

zero. The architecture for the zigzag/inverse zigzag is 

shown in Fig. 4, consisting two transpose buffers RAM1 

and RAM2, which are used to synchronize the procedure 

in pipeline manner, after 64 locations are written, RAM1 

goes into read mode and RAM2 goes into write mode. The 

buffer latency is 64 clock cycles where the scanning order 

requires that some of the later coefficients that available in 

the beginning. Every 64 clock RAMs make change from 

write mode to read mode alternatively by Toggle2 which 

switch signal from '0' to '1' at every 64 clock cycles. The 

implementation of the zigzag/Inverse-zigzag on the same 

architecture makes use of more optimized resources, by 

sharing these resources where two RAMs are used in 

zigzag and inverse-zigzag instead of using two RAMs for 

each one. 

 

Fig. 4. The Block diagram of Zigzag. 

4.3. Entropy/Inverse Entropy 

The proposed entropy coding module consists of two 

interrelated modules, as shown in Fig. 5, the run length 

encoder and the Huffman encoder modules. The output of 
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zigzag is input to the run length encoder as data stream. 

There are three outputs of the run length encoder; the first 

output is an amplitude value, the second is a run length of 

zeros, and the third is the flag bit that indicates nonzero 

value. These outputs will provide input to Huffman 

encoder. 

 

Fig. 5. Entropy encoder block diagram. 

The run length encoder is a fairly simple concept 

which looks for runs of zeros in the data stream as shown 

in Fig. 6. The run length encoder will output an amplitude 

value, a run length of zeros, and flag as indicator for 

nonzero coefficients. Every coefficient which equals zero 

increases an internal counter which counts the run of zeros. 

Every nonzero coefficient input to the run length encoder 

will output a set of values. 

 

Fig. 6. The run length of the encoder architecture. 

The run length, amplitude, and the flag values from 

the run length encoder are used as input to the Huffman 

encoder. Instead of assigning code word as in the standard 

Huffman Tables to produce the output which has unequal 

number of bits and the maximum is 16-bits as well as 

amplitude value, the proposed architecture will produce the 

run length of zeros with amplitude as output data. Where 

its size is 15-bits which are equal all the output, thereby 

will make the reconstruction of the compressed data to be 

less complex and easier to be predicted than in the case of 

Huffman tables. Another advantage is that there is no need 

for ROM to store Huffman tables. 

The reversible operations are used in the entropy 

decoder. The compressed input data has an equal lengths 

of number of bits. The Huffman decoder separates the run 

length and amplitude. If the run length value is zero, it will 

send the amplitude directly as input to inverse zigzag stage, 

otherwise, it will send zero values as input and decrease the 

value of the run length of zeros, until the run length value 

becomes zero then it will send the amplitude value and read 

another input from the compressed data. Fig. 7 shows the 

entropy decoder. 

 

Fig. 7. The block diagram of the entropy decoder. 

4.4. FPGA Implementation of the JPEG 
CODEC 

The proposed architectures have been described by 

means of VHDL language. The results are summarized in 

Table 1. 

The latency for the architecture is 166 clock cycles for the 

compressor and 165 clock cycles for the decompressor. 

Figs. 8 and 9 show the simulation results for the 

compressor and the decompressor respectively. 

Table 1 

Synthesis of JPEG CODEC for Xilinx Spartan-  3E 

XC3S500. 

FPGA Resource JPEG CODEC 

No. of Slices 3132  out of   4656    67% 

No. of Slice Flip Flops 3209  out of   9312    34% 

No. of 4 input LUTs 4442  out of   9312    47% 

No. of bonded IOBs 18  out of   232        8% 

No. of Slices 3132  out of   4656    67% 

BRAMs 0 

Mult18x18s 9 out of 20   45% 

Performance 78,92 MHz 

 

Fig. 8. Simulation results for JPEG Compressor. 
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Fig. 9. Simulation results for JPEG DeCompressor. 

Table 2 shows the PSNR and compression ratio (CR) 

for some standard of gray-scale (512×512) images. 

Table 2 

PSNR and CR for some of standard gray-scale images. 

Goldhill 
   

Peppers 

PSNR=28,0620dB      SNR=27,9920dB 

CR=16 CR=16,29 

Boat   Sailboat 

  PSNR=28,4104dB     PSNR=26,6533dB 

        CR=15,93              CR=12,6 

4.5. JPEG Architectures Comparison 

This paper verifies an overall recent comparison for 

the JPEG CODEC which involves the required multipliers 

and the performance of the proposed architectures as 

compared to the previous JPEG CODEC architectures. All 

architectures are pipelined; the proposed architecture 

reduces the arithmetic operations by 45% as compared to 

the newer JPEG CODEC that is illustrated in Table 3.  

4.6. System on Chip 

Figure 10 shows the experimental setup for the JPEG 

CODE system. It consists of host terminal PC and Spartan-

3E XC3S500 FPGA. Host terminal PC is connected to the 

soft processor through USB (Universal Serial Bus) cable. 

Data in memory that is embedded on FPGA could be read 

and displayed on the computer screen by using a 

Microblaze processor which makes interface between the 

data buffer and I/O peripherals which are available on the 

board as RS232. This peripheral allows to upload the image 

from the memory in FPGA and displays it on the computer. 

Table 3 

Comparison for the JPEG CODEC. 

Ref. [4] [11] [2] Proposed 

No. of 

Multiplier  
- - 20 9 

Latency 

(Cycles) 
238 243 NA 

166 for C 

165 for D 

Frame/sec 122,4 114 NA 190 

Frequency 

(MHZ) 
37,6 39,6  6   78,969 

BRAMs 2 6 
1 

Dual Port  
- 

FPGA 
Fle-

x10KE 

Fle-   

x10KE 
XC2-V8000 

XC3-

S500E 

Function C C C&D C&D 

C=Compression Operation 

D=Decompression Operation 

NA=Not Available 

 

Fig. 10. Emulation setup. 

5. CONCLUSIONS 

A pipelined JPEG CODEC is designed and 

implemented on Spartan-3E FPGA for gray scale images 

format. The proposed architecture was designed in a 

modular that performs forward/backward function to allow 

the reuse of all modules in any other future designs. A 

(8x8) points low power 2D-DCT/IDCT is also 

implemented using a shared transpose buffers between 

DCT and IDCT. The quantization and inverse quantization 

unit are shared in one multiplier.  

In the entropy encoder the Huffman tables that are 

required to reduce memory since no need for storing these 

tables in ROM, thus it makes the process reconstruction 

easier with suitable compression ratio as shown in Table 2. 

Other stages are also implemented in optimized method by 

sharing resources and latency for overall JPEG CODEC. 

The designed JPEG CODEC gives a higher throughput 

which is suitable for real time video applications since the 

latency equals to 166 clock cycles. 
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