vol23no2pa12

References

[1]Chakravarthy Gopalan, Yi Ma, Tony Gallo, ”Demonstration of Conductive Bridging Random Access Memory (CBRAM) in Logic CMOS Process”, Adesto Technologies, 2010.
[2] MassoodTabib-Azar, and Yan Xie, ”Non-Volatile Solid-Electrolyte Memory Devices: Electronic versus Optical Latent Image Formation in Silver Halides, “Case Western Reserve University Cleveland, Ohio, 2006.
[3] Waser, R., Dittmann, R., Staikov, G., and Szot, K., ”Redox-Based Resistive Switching Memories Nanoionic Mechanisms, Prospects, and Challenges”, Nano ionic Mechanisms, Prospects, and Challenges Adv. Mater. 21, 2632, 2009.
[4] Aono, M. and Hasegawa, T., ”The Atomic Switch”, IEEE Vol.98, No.6, pp 93-98, 2010.
[5] Shimeng Yu, Student Member, ” Compact Modeling of Conducting-Bridge Random Access Memory (CBRAM)”, IEEE Transactions on Electron Devices, Vol. 58, No. 5, May 2011.

Tikrit Journal of Engineering Sciences (2016) 23(2) 103- 109

Modeling and Simulation of Nonvolatile Memory Based on copper sulfide

Khalid Khaleel Mohammad
Electrical Eng. Dept., University of Mosul,Iraq

Abstract

The memory cells has become one of the computer basics electronic components, especially nonvolatile ion-dependent growth of filament or so called Conductive Bridge Random Access Memory (CBRAM) type. The memory cells in this work is focused on using copper sulfide as ionic compound Cu2S, the model proposed to identify the behavior of the cell in terms of voltage and current. The model cell is then simulated in order to extract the variables that affect the behavior of the cell and the factors which can be identify the optimal dimensions and specifications in terms of their small size and minimum power dissipation as possible at the same time. The simulation results show that the best thickness of the cell is about 20 nm with a radius equal to 10 nm, These dimensions of the cell has a resistance ratio of high resistance state HRS to low resistance state LRS(Roff / Ron) which correspond to different logic is about 1014 .

Download Full-Text PDF

Keywords: Ionic Memory, Switching Memory, CBRAM.

How to cite

TJES: Mohammad KK. Modeling and Simulation of Nonvolatile Memory Based on copper sulfide. Tikrit Journal of Engineering Sciences 2016; 23 (2):103-109.
APA: Mohammad, K. K. (2016). Modeling and Simulation of Nonvolatile Memory Based on copper sulfide. Tikrit Journal of Engineering Sciences, 23(2), 103-109.